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1. Implementation Details
1.1. Network Architecture

Root and Contact Module. We use HRNet [1] as the CNN
backbone, which is initialized with METRO [2] pretrained
weights. Specifically, the backbone extracts stage-4 fea-
tures f ∈ R56×56×64 from an input image I ∈ R224×224×3.
We use a fully-connected layer to map f to initial 2D root
heatmap f1 ∈ R56×56, normalized depth map f2 ∈ R56×56,
and image feature map f3 ∈ R56×56×32. During training,
we use an extra fully-connected layer to map f to a 2D con-
tact segmentation map f4 ∈ R56×56×8.

We follow SMAP [3] to estimate the initial human root
from f1 and f2. Using the initial root estimation, we select
interest nearby scene points, voxelize these points, and con-
struct 3D features g ∈ RN×35, as described in the Sec.3.2
of the main paper. For g ∈ RN×35, N indicates the voxel
numbers, and feature dimension 35 consists of 3 for the vec-
tor representation and 32 for the unprojected f3.

The Sparse 3D CNN builds upon the publicly available
architecture1 of SPVCNN [4], which consists of downsam-
ple and upsample modules with residual connections and
point-wise transforms. We refer readers to [4] for more
details. We add one fully-connected layer at the input to
map g from 35 dimensions to 32. We modify the output
fully-connected layer to output a feature dimension of 12,
which consists of 1 for raw confidence crawi and 3 for re-
fined offseti, and 8 for contact segmentation results.

We experimentally find a soft confidence weighting over
all voxels gives the best performance,

c = Softmax(σ(craw)) (1)

where σ is sigmoid.
Following PROX [5], we use seven contact categories as

segmentation labels, which is illustrated in Fig. 1.

Mesh Recovery Module. As illustrated in Fig. 2, we elab-
orate on “Figure 4” of the main paper with more details
of the residual connection and positional embedding. The

1https://github.com/mit-han-lab/spvnas

Figure 1. Definition of Contact Categories. We use the definition
from PROX [5]. The color of different contact regions aligns with
the figures of the main paper.

main module is a stack of three submodules that share the
same structure. The output feature dimensions for each sub-
module are 512, 128, and 3. In Fig. 3, we give the definition
of self-attention layer and cross-attention layer used in the
parallel scene network. Specifically, self-attention is used
to process scene point features. The cross-attention is used
to fuse scene point features to vertex features.

1.2. Loss

We elaborate on the definition of the loss mentioned in
Sec.3.4 of the main paper. The notation with ·̄ indicates the
groundtruth.

Root and Contact. LR2D is the L2 of 2D root heatmap. We
create the ground truth heatmap f̄1 by projecting the ground
truth root 3D to the image plane and using a 3× 3 gaussian
kernel to smooth the target point.

LR2D =
∑
‖f1 − f̄1‖2 (2)

LRZ is the L1 of depth prediction. We use ground truth
point (x̄, ȳ) to pick the depth value from the predicted depth
map and compute loss with the ground truth depth, which is
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Figure 2. Mesh Recovery Module. We give the network design details, including residual connection and positional embedding. The
semantic-add works similarly to the semantic-cat, as described in the main paper.

normalized by focal length and image size.

LRZ =
∑
‖f2(x̄, ȳ)− Z̄‖1 (3)

LROV is the L1 of offset vector difference. We compute
ground truth offset vector ōi for each voxel point.

LROV =
∑
i

‖o∗i − ōi‖1 (4)

LR3D is the L1 of refined root position. Since the re-
fined root r∗ is a confidence-based weighted average of all
prediction, this loss, together with LROV, encourage the net-
work to learn confidence.

LR3D = ‖r∗ − r̄3D‖1 (5)

LC is the cross-entropy loss for N voxel points and the
MSE loss for 2D contact map, which is an auxiliary training

task,

LC = − 1

N

N∑
n=1

C∑
c=1

log
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c+
∑
‖f4−f̄4‖2

(6)

Human Mesh Recovery. LV is the mean L1 of translation-
aligned vertex error.

LV =
1

V

V∑
i

‖vi − v̄i‖1 (7)

LJ is the mean L1 of translation-aligned joint 3D error.
We use 14 joints of H36M following METRO [2].

LJ =
1

J

J∑
i

‖ji − j̄i‖1 (8)

LCP is the mean L1 of the input scene points p and out-
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Figure 3. Self and Cross Attention Layers share the same core
network architecture. The difference is at the input, where self-
attention fuses one input feature, and cross-attention fuses two in-
put features.

method Penetration↓ Reprojection↓

PROX (RGBD) [5] 7.35 19.36
PROX+HuMoR (RGBD) [6] 3.15 10.89

Table 1. Comparison of the pseudo ground-truth in PROX
qualitative. We re-generate the pseudo ground-truth for the
PROX [5] qualitative dataset with PROX+HuMoR [6] using the
RGBD input. We report the penetration and reprojection error
compared to the originally released PROX results.

put scene points p̃.

LCP =
1

N

N∑
i

‖pi − p̃i‖1 (9)

LGV is the mean L1 of vertex error in global coordinates,
which is the camera coordinates in our implementation.

LGV =
1

V

V∑
i

‖vgi − v̄
g
i ‖1 (10)

1.3. Dataset Preparation

We combine HuMoR [6] and PROX [5] to re-generate
the pseudo ground-truth. As shown in the 1, the penetration
and reprojection error are all reduced. The penetration is
the average over all penetrated vertices. The reprojection
error is calculated on the 2D joints from openpose [7] with
confidence higher than 0.75.

1.4. More ablations

Number of contact categories. Tab. 2 shows the abla-
tion results for the predicted number of contact categories.
The root and contact module classifies scene contacts as

Method G-MPJPE↓ G-MPVE↓ PenE↓ ConFE↓ MPJPE↓ MPVE↓

Dataset GT [8] / / 9.8 10.8 / /

METRO [2]† 511.7 509.7 33.6 37.6 98.8 107.9
SA-HMR-1 278.3 286.7 16.8 23.2 98.1 107.9
SA-HMR-432 275.6 283.4 15.8 22.7 96.2 105.5
SA-HMR-8 264.6 272.7 14.9 19.0 93.9 103.0

Table 2. Ablation of number of contact categories on RICH
dataset.

1/432/8 categories, where the human mesh recovery mod-
ule is adapted accordingly. The 432 stands for treating each
downsampled vertex of the human mesh as an individual
class.

2. Concluding Remarks
2.1. Limitation and Future Works

The current datasets [5, 8, 9] that contain images and
scene-scans are limited in capacity, and capturing ground
truth data is challenging due to occlusion. Additionally,
the current data does not account for object deformation,
and the groundtruth training labels still exhibit human-scene
penetration, making it difficult for SA-HMR to effectively
learn to estimate scene contacts. Synthetic data appears to
be a promising direction to address these limitations.

In situations where there are inconsistencies between the
pre-scanned scene and the image, our model tends to pre-
dict results that align with the pre-scanned scene, which
produces better visualization but lower accuracy. In the fu-
ture, we also plan to enhance the system by incorporating
dynamic object detection as additional 3D cues.

2.2. Social Impact

Accurate and efficient mesh reconstruction in the scene
has mostly positive use cases in VR/AR, games, and
Human-Computer Interaction. However, we also see a pos-
sibility that our results could be used for fake video pro-
duction with recent advances in SMPL-based neural body
rendering. Being aware of this, we will make our models
available only for research purposes.
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