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PGSR: Planar-based Gaussian Splatting for Efficient
and High-Fidelity Surface Reconstruction

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai,
Nan Wang, Haomin Liu, Hujun Bao, Guofeng Zhang†

Fig. 1: PGSR representation. We present a Planar-based Gaussian Splatting Reconstruction representation for efficient and high-fidelity surface reconstruction
from multi-view RGB images without any geometric prior (depth or normal from pre-trained model). The courthouse reconstructed by our method demonstrates
that PGSR can recover geometric details, such as textual details on the building. From left to right: input SfM points, planar-based Gaussian ellipsoid, rendered
view, textured mesh, surface, and normal.

Abstract—Recently, 3D Gaussian Splatting (3DGS) has at-
tracted widespread attention due to its high-quality rendering,
and ultra-fast training and rendering speed. However, due to the
unstructured and irregular nature of Gaussian point clouds, it
is difficult to guarantee geometric reconstruction accuracy and
multi-view consistency simply by relying on image reconstruction
loss. Although many studies on surface reconstruction based
on 3DGS have emerged recently, the quality of their meshes is
generally unsatisfactory. To address this problem, we propose a
fast planar-based Gaussian splatting reconstruction representa-
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tion (PGSR) to achieve high-fidelity surface reconstruction while
ensuring high-quality rendering. Specifically, we first introduce
an unbiased depth rendering method, which directly renders
the distance from the camera origin to the Gaussian plane
and the corresponding normal map based on the Gaussian
distribution of the point cloud, and divides the two to obtain
the unbiased depth. We then introduce single-view geometric,
multi-view photometric, and geometric regularization to preserve
global geometric accuracy. We also propose a camera exposure
compensation model to cope with scenes with large illumination
variations. Experiments on indoor and outdoor scenes show
that our method achieves fast training and rendering while
maintaining high-fidelity rendering and geometric reconstruction,
outperforming 3DGS-based and NeRF-based methods. Our code
will be made publicly available, and more information can be
found on our project page (https://zju3dv.github.io/pgsr/).

Index Terms—Planar-Based Gaussian Splatting, Surface Re-
construction, Neural Rendering, Neural Radiance Fields.

https://zju3dv.github.io/pgsr/
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Fig. 2: Unbiased depth rendering. (a) Illustration of the rendered depth: We take a single Gaussian, flatten it into a plane, and fit it onto the surface as an
example. Our rendered depth is the intersection point of rays and surfaces, matching the actual surface. In contrast, the depth from previous methods [11],
[24] corresponds to a curved surface and may deviate from the actual surface. (b) We use true depth to supervise two different depth rendering methods.
After optimization, we map the positions of all Gaussian points. Gaussians of our method fit well onto the actual surface, while the previous method results
in noise and poor adherence to the surface.

I. INTRODUCTION

NOVEL view synthesis and geometry reconstruction are
challenging and crucial tasks in computer vision, widely

used in AR/VR [13], [65], [71], 3D content generation [10],
[18], [48], [53], [63], and autonomous driving. To achieve
a realistic and immersive experience in AR/VR, novel view
synthesis needs to be sufficiently convincing, and 3D re-
construction [32], [36], [62], [64], [66] needs to be finely
detailed. Recently, neural radiance fields [22], [41], [42], [61]
have been widely used to tackle this task, achieving high-
fidelity novel view synthesis [2], [3], [44] and 3D geometry
reconstruction [33], [56]. However, due to the computationally
intensive volume rendering methods, neural radiance fields
often require training times of several hours to even hundreds
of hours, and rendering speeds are difficult to achieve in real-
time. Recently, 3D Gaussian Splatting (3DGS) [27] has made
groundbreaking advancements in this field. By optimizing the
positions, rotations, scales, and appearances of the explicit 3D
Gaussians and combining alpha-blend rendering, 3DGS has
achieved training times in the order of minutes and rendering
speeds in the millisecond range.

Although 3DGS achieves high-fidelity novel view render-
ing and fast training and rendering speeds. As discussed in
previous methods [19], [24], Gaussians often do not conform
well to actual surfaces, resulting in poor geometric accuracy.
Fig. 3 also shows this conclusion. Extracting accurate meshes
from millions of discrete Gaussian points is an extremely
challenging task. The fundamental reason for this lies in the
disorderly and irregular nature of Gaussians, which makes
them unable to accurately model the surfaces of real scenes.
Moreover, optimizing solely based on image reconstruction
loss can easily lead to local optima, ultimately resulting in
Gaussians failing to conform to actual surfaces and exhibiting
poor geometric accuracy. In many practical tasks, geometric
reconstruction accuracy is a crucial metric. Therefore, to
address these issues, we propose a novel framework based
on 3DGS that achieves high-fidelity geometric reconstruction
while maintaining the high-quality rendering quality, fast train-
ing, and rendering speeds characteristic of 3DGS.

In this paper, we propose a novel unbiased depth render-
ing method based on 3DGS, facilitating the integration of
various geometric constraints to achieve precise geometric
estimation. Previous methods [24] render depth by blending
the accumulations of each Gaussian at the z-position of the
camera, resulting in two main issues as shown in Fig. 2.
The depth corresponds to a curved surface and may deviate
from the actual surface. To address these issues, we compress
3D Gaussians into flat planes and blend their accumulations
to obtain normal and camera-to-plane distance maps. These
maps are then transformed into depth maps. This method
involves blending Gaussian plane accumulations to determine
a pixel’s plane parameters. The intersection of the ray and
plane defines the depth, depending on the Gaussian’s position
and rotation. By dividing the distance map by the normal
map, we cancel out the ray accumulation weights, ensuring
the depth estimation is unbiased and falls on the estimated
plane. In our experiment shown in Fig. 2, we used true depth
to guide two depth rendering methods. After optimization, we
mapped the positions of all Gaussian points. Results show
that our method produces Gaussians that closely align with
the actual surface, while the previous method generates noisy
Gaussians that fail to adhere precisely to the surface.

After rendering the plane parameters for each pixel, we
apply single-view and multi-view regularization to optimize
these parameters. Empirically, adjacent pixels often belong to
the same plane. Using this local plane assumption, we compute
a normal map from neighboring pixel depth estimations and
ensure consistency between this normal map and the rendered
normal map. At geometric edges, the local plane assumption
fails, so we detect these edges using image edges and reduce
the weight in these areas, achieving smooth geometry and
consistent depth and normals. However, due to the discrete and
unordered nature of Gaussians, geometry may be inconsistent
across multiple views. To address this, we apply multi-view
regularization ensuring global geometric consistency. Similar
to the Eikonal loss [56], we incorporate a multi-view geometric
consistency loss to ensures smooth and consistent geometric
reconstruction, even in areas with noise, blur, or weak textures.

We use two photometric coefficients to compensate for
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overall changes in image brightness, further improving re-
construction quality. Finally, we validate the rendering and
reconstruction quality on the MipNeRF360, the DTU [23] and
the Tanks and Temples(TnT) [28] dataset. Experimental results
demonstrate that, while maintaining the original Gaussian
rendering quality and rendering speed, our method achieves
state-of-the-art reconstruction accuracy. Moreover, our training
speed only requires one hour on a single GPU, while the state-
of-the-art method based on NeRF [33] requires eight GPUs
over two days. In summary, our method makes the following
contributions:

• We propose a novel unbiased depth rendering method.
Based on this rendering method, we can render the
reliable plane parameters for each pixel, facilitating the
incorporation of various geometric constraints.

• We introduce single-view and multi-view regulariza-
tions to optimize the plane parameters of each pixel,
achieving high-precision global geometric consistency.

• The exposure compensation simply and effectively en-
hances reconstruction accuracy.

• Our method, while maintaining the high rendering ac-
curacy and speed of the original GS, achieves state-of-
the-art reconstruction accuracy, and our training time
is near 100 times faster compared to state-of-the-art
reconstruction methods based on NeRF [33].

Fig. 3: Rendered Depth. The original depth in 3DGS exhibits significant
noise, while our depth is smoother and more accurate.

II. RELATED WORK

Surface reconstruction is a cornerstone field in computer
graphics and computer vision, aimed at generating intricate
and accurate surface representations from sparse or noisy
input data. Obtaining high-fidelity 3D models from real-world
environments is pivotal for enabling immersive experiences in
augmented reality (AR) and virtual reality (VR). This paper
focuses exclusively on surface reconstruction under given
poses, which can be readily computed using SLAM [5], [7],
[8] or SFM [43], [51], [57] methods.

A. Traditional Surface Reconstruction

Traditional methods adhere to the universal multi-view
stereo pipeline, which can be roughly categorized based on
the intermediate representation they rely on, such as point
cloud [16], [30], volume [29], depth map [4], [17], [52],
etc. The commonly used method separates the overall MVS
problem into several parts, by initially extracting dense point
clouds from multi-view images through block-based match-
ing [1], followed by the construction of surface structures

either through triangulation [6] or implicit surface fitting [25],
[26]. Despite being well-established and extensively utilized in
academia and industry, these traditional methods are suscep-
tible to artifacts stemming from erroneous matching or noise
introduced during the pipeline. In response, several approaches
aim to enhance reconstruction completeness and accuracy by
integrating deep neural networks into the matching process
[50], [54].

B. Neural Surface Reconstruction

Numerous pioneering efforts have leveraged pure deep
neural networks to predict surface models directly from single
or multiple image conditions using point clouds [14], [34],
voxels [12], [58], and triangular meshes [32], [55] or implicit
fields [40], [47] in end-to-end manner. However, these methods
often incur significant computational overhead during network
inference and demand extensively labeled training 3D models,
hindering their real-time and real-world applicability.

With the rapid advancement in neural surface reconstruction
tasks, a meticulously designed scene recovery method named
NeRF [41] emerged. NeRF-based methods take 5D ray in-
formation as input and predict density and color sampled in
continuous space, yielding notably more realistic rendering
results. However, this representation falls short in capturing
high-fidelity surfaces.

Consequently, several approaches have transformed NeRF-
based network architectures into surface reconstruction frame-
works by incorporating intermediate representations such as
occupancy [46] or signed distance fields [56], [60]. Despite the
potent surface reconstruction capabilities exhibited by NeRF-
based frameworks, the stacked multi-layer-perceptron (MLP)
layers impose constraints on inference time and representation
ability. To address this challenge, various following studies aim
to reduce dependency on MLP layers by decomposing scene
information into separable structures, such as points [59] and
voxels [31], [33], [35].

C. Gaussian Splatting based Surface Reconstruction

SuGaR [19] proposed a method to extract Mesh from
3DGS. They introduced regularization terms to encourage
Gaussian fitting to the scene surface. By sampling 3D point
clouds from the Gaussian using the density field, they utilized
Poisson reconstruction to extract a mesh from these sampled
point clouds. While encouraging Gaussian fitting to the sur-
face enhances geometric reconstruction accuracy, irregular 3D
Gaussian shapes make modeling smooth geometric surfaces
challenging. Moreover, due to the discreteness and disorder
of the Gaussian, relying solely on image reconstruction loss
can lead to overfitting, resulting in incomplete geometric
information and surface mismatch. 2DGS [21] achieves view-
consistent geometry by collapsing the 3D volume into a set
of 2D oriented planar Gaussian disks. GOF [69] establishes
a Gaussian opacity field, enabling geometry extraction by
directly identifying its level-set. However, these 3DGS-based
methods still produce biased depth and multi-view geometric
consistency is not guaranteed. To address these issues, we
flattened the Gaussian into a planar shape, which is more
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Fig. 4: PGSR Overview. We compress Gaussians into flat planes and render distance and normal maps, which are then transformed into unbiased depth maps.
Single-view and multi-view geometric regularization ensure high precision in global geometry. Exposure compensation RGB loss enhances reconstruction
accuracy.

suitable for modeling actual surfaces and facilitates rendering
parameters such as normals and distances from the plane to
the origin. Based on these plane parameters, we proposed
unbiased depth estimation, allowing us to extract geometric
parameters from the Gaussian. Then, we introduced geometric
regularization terms from single-view and multi-view to opti-
mize these geometric parameters, achieving globally consistent
high-precision geometric reconstruction.

III. PRELIMINARY OF 3D GAUSSIAN SPLATTING

3DGS [27] explicitly represents 3D scenes with a set of
3D Gaussians {Gi}. Each Gaussian is defined by a Gaussian
function:

Gi(x|µi,Σi) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi),

where µi ∈ R3 and Σi ∈ R3×3 are the center of a point
pi ∈ P and corresponding 3D covariance matrix, respectively.
The covariance matrix Σi is factorized into a scaling matrix
Si ∈ R3×3 and a rotation matrix Ri ∈ R3×3:

Σi = RiSiS
⊤
i R⊤

i .

3DGS allows fast α-blending for rendering. Given a trans-
formation matrix W and an intrinsic matrix K, µi and Σi

can be transformed to camera coordinate corresponding to W
and then projected to 2D coordinate:

µ
′

i = KW [µi, 1]
⊤, Σ

′

i = JWΣiW
⊤J⊤,

where J is the Jacobian of the affine approximation for the
projective transformation. Rendering color C ∈ R3 of a pixel
u can be obtained in a manner of α-blending:

C =
∑
i∈N

Tiαici, Ti =

i−1∏
j=1

(1− αi),

where αi is calculated by evaluating Gi(u|µ
′

i,Σ
′

i) multiplied
with a learnable opacity corresponding to Gi, and the view-
dependent color ci ∈ R3 is represented by spherical harmonics

(SH) from the Gaussian Gi. Ti is the cumulative opacity. N
is the number of Gaussians that the ray passes through.

The center µi of a Gaussian Gi. can be projected into the
camera coordinate system as:[

xi, yi, zi, 1
]⊤

= W [µi, 1]
⊤,

Previous Methods [11], [24] render depth under the current
viewpoint:

D =
∑
i∈N

Tiαizi.

IV. METHOD

Given multi-view RGB images of static scenes, our goal
is to achieve efficient and high-fidelity scene geometry re-
construction and rendering quality. Compared to 3DGS, we
achieve global consistency in geometry reconstruction while
maintaining similar rendering quality. Initially, we improve
the modeling of scene geometry attributes by compressing
3D Gaussians into a 2D flat plane representation, which
is used to generate plane distance and normal maps, and
subsequently converted into unbiased depth maps. We then
introduce single-view geometric, multi-view photometric, and
geometric consistency loss to ensure global geometry consis-
tency. Additionally, the exposure compensation model further
improves reconstruction accuracy.

A. Planar-based Gaussian Splatting Representation

In this section, we will discuss how to transform 3D
Gaussians into a 2D flat plane representation. Based on this
plane representation, we introduce an unbiased depth render-
ing method, which will render plane-to-camera distance and
normal maps, and can then be converted into depth maps.
With geometric depth, distance, and normal maps available,
it becomes easier to introduce single-view regularization and
multi-view regularization in the following sections.
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Fig. 5: The rendering and mesh reconstruction results in various indoor and outdoor scenes that we have achieved. PGSR achieves high-precision
geometric reconstruction from a series of RGB images without requiring any prior knowledge.

Fig. 6: Unbiased Depth.

Due to the difficulty in modeling real-world scene geometry
attributes such as depth and normals using 3D Gaussian
shapes, it’s necessary to flatten the 3D Gaussians into 2D
flat Gaussians in order to accurately represent the geometry
surface of the actual scene. Achieving precise geometry re-
construction and high-quality rendering requires the 2D flat
Gaussians to accurately conform to the scene surface. Since
the 2D flat Gaussians approximate a local plane, we can
conveniently render the depth and normals of the scene.

Flattening 3D Gaussian: The covariance matrix
∑∑∑

i =
RiSiS

T
i R

T
i of a 3D Gaussian expresses the ellipsoidal shape.

Here, Ri represents the orthonormal basis of the ellipsoid’s
three axes, and the scale factor Si defines the size along each
direction. By compressing the scale factor along specific axes,
the Gaussian ellipsoid can be flattened into planes aligned
with those axes. We compress the Gaussian ellipsoid along the
direction of the minimum scale factor, effectively flattening the
ellipsoid into a plane closest to its original shape. According
to the method [9], we directly minimize the minimum scale
factor Si = diag(s1, s2, s3) for each Gaussian:

Ls =∥ min(s1, s2, s3) ∥1 . (1)

Unbiased Depth Rendering: The direction of the minimum
scale factor corresponds to the normal ni of the Gaussian. Due

to the ambiguity of the normal direction when there are two
directions for the shortest axis, we resolve this issue by using
the viewing direction to determine the normal direction. This
implies that the angle between the viewing direction and the
normal direction should be greater than 90 degrees. The final
normal map under the current viewpoint is achieved through
α-blending:

N =
∑
i∈N

RT
c niαi

i−1∏
j=1

(1− αj), (2)

where Rc is the rotation from the camera to the global world.
The distance from the plane to the camera center can be
expressed as di = (RT

c (µi − Tc))R
T
c n

T
i , where Tc is the

camera center in the world. µi is the center of gaussian Gi.
The final distance map under the current viewpoint is achieved
through α-blending:

D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj), (3)

Referencing Fig. 6, after obtaining the distance and normal
of the plane through rendering, we can determine the corre-
sponding depth map by intersecting rays with the plane:

D(p) =
D

N(p)K−1p̃
. (4)

where p = [u, v]T is the 2D position on the image plane.
p̃ denotes the homogeneous coordinate of p, and K is the
intrinsic of camera.

As shown in Fig. 2, our method of rendering depth has
two major advantages compared to other depth rendering tech-
niques. First, Our depth shapes are consistent with flattened
Gaussian shapes, which can truly reflect actual surfaces. Previ-
ous methods typically involve directly rendering the depth map
based on α-blending of the depth Z of Gaussians. Their depth
is curved, inconsistent with the flat Gaussian shape, causing
geometric conflicts. In contrast, we render the normal and
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distance maps of the plane first and then convert them into the
depth map. Our depth lies on the Gaussian fast plane. When
the 3D Gaussian flat planes fit the actual surface, the rendered
depth can ensure complete consistency with the actual surface.
Second, since the accumulation weight for each ray may
be less than 1, previous rendering methods are affected by
the weight accumulation, potentially resulting in depths that
are closer to the camera side and overall underestimated. In
contrast, our depth is obtained by dividing the distance from
the rendering origin to the plane by the normal, effectively
eliminating the influence of weight accumulation coefficients.

Fig. 7: Qualitative comparison on DTU dataset. PGSR produces smooth
and detailed surfaces.

B. Geometric Regularization

1) Single-View Regularization: The original 3DGS relying
solely on image reconstruction loss can easily fall into local
overfitting optimization, leading to Gaussian shapes incon-
sistent with the actual surface. Based on this, we introduce
geometric constraints to ensure that the 3D Gaussian fits the
actual surface as closely as possible.

Local Plane Assumption: Encouraged by these meth-
ods [24], [37], [49], we adopt the assumption of local planarity
to constrain the local consistency of depth and normals,
meaning a pixel and its neighboring pixels can be considered
as an approximate plane. After rendering the depth map,
we sample four neighboring points using a fixed template.
With these known depths, we compute the plane’s normal.
This process is repeated for the entire image, generating
normals from the rendered depth map. We then minimize the
difference between this normal map and the rendered normal
map, ensuring geometric consistency between local depth and
normals.

Image Edge-Aware Single-View Loss: Neighboring pixels
may not necessarily fully adhere to the local planarity as-
sumption, especially in edge regions. To address this issue,
We use image edges to approximate geometric edges. For a
pixel point p, we sample four points from the neighboring
pixels, such as up, down, left, and right. We project the four
sampled depth points into 3D points {Pj |j = 1, ..., 4} in the
camera coordinate system, then calculate the normal of the
local plane for the pixel point p is:

Nd(p) =
(P1 − P0)× (P3 − P2)

|(P1 − P0)× (P3 − P2)|
, (5)

Finally, we add the single-view normal loss is:

Lsvgeo =
1

W

∑
p∈W

∣∣∇I
∣∣5 ∥ Nd(p)−N(p) ∥1, (6)

Where ∇I is the image gradient normalized to the range of
0 to 1, N(p) is from Equation 2, and W is the set of image
pixels.

2) Multi-View Regularization: Single-view geometry regu-
larization can maintain consistency between depth and normal
geometry, providing fairly accurate initial geometric informa-
tion. However, due to the irregular discretization of Gaussian
point cloud optimization, we found that the geometry structure
across multiple views is not entirely consistent. Therefore, it
is necessary to introduce multi-view geometry regularization
to ensure global consistency of the geometry structure.

Multi-View Geometric Consistency: The image loss often
suffers from influences such as image noise, blur, and weak
textures. In these cases, the geometric solution for photomet-
ric consistency is unreliable. Due to the discrete nature of
Gaussian properties, we cannot establish a spatially dense or
semi-dense SDF field as in SDF methods based on NeRF. We
are unable to use spatial smoothness constraints, such as the
Eikonal loss [56], to avoid the influence of unreliable solutions.
To mitigate the impact of unreliable geometric solutions and
ensure multi-view geometric consistency, we introduce this
consistency prior constraint, which helps converge to the
correct solution position, enhancing geometric smoothness.

We render the normals N and the plane distances D to
the camera for both the reference frame and the neighboring
frame. As shown in Fig. 9, for a specific pixel pr in the
reference frame, the corresponding normal is nr and the
distance is dr. The pixel pr in the reference frame can be
mapped to a pixel pn in the neighboring frame through the
homography matrix Hrn:

p̃n = Hrnp̃r, (7)

Hrn = Kn(Rrn − Trnn
T
r

dr
)K−1

r , (8)

where p̃ is the homogeneous coordinate of p, Rrn and Trn

are the relative transformation from the reference frame to the
neighboring frame. Similarly, for the pixel pn in the neighbor-
ing frame, we can obtain the normal nn and the distance dn to
compute the homography matrix Hnr. The pixel pr undergo
forward and backward projections between the reference frame
and the neighboring frame through Hrn and Hnr. Minimizing
the forward and backward projection error constitutes the
multi-view geometric consistency regularization:

Lmvgeom =
1

V

∑
pr∈V

ϕ(pr) (9)

where ϕ(pr) =∥ pr − HnrHrnpr ∥ is the forward and
backward projection error of pr. When ϕ(pr) exceeds a certain
threshold, it can be considered that the pixel is occluded or
that there is a significant geometric error. To prevent errors
caused by occlusion, these pixels will not be included in the
multi-view regularization term. If these pixels are mistakenly
identified as occluded due to geometric errors, it does not
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Fig. 8: Qualitative comparison on Tanks and Temples dataset. We visualize surface quality using a normal map generated from the reconstructed mesh.
PGSR outperforms other baseline approaches in capturing scene details, whereas baseline methods exhibit missing or noisy surfaces.

affect our final convergence. This is because the single-view
regularization term and the use of sparse 3D Gaussians to
represent dense scenes will gradually propagate high-precision
geometry, eventually leading all Gaussians to converge to the
correct positions. V is the set of all pixels in the image
excluding those with high forward and backward projection
error.

Multi-View Photometric Consistency: Drawing inspira-
tion from multi-view Stereo (MVS methods) [4], [15], [51], we
employ photometric multi-view consistency constraints based
on plane patches. We map a 11x11 pixel patch Pr centered at

pr to the neighboring frame patch Pn using the homography
matrix Hrn. Focusing on geometric details, we convert color
images into grayscale. Multi-view photometric regularization
requires that Pr and Pn should be as consistent as possible.
We use the normalized cross correlation (NCC) [68] of patches
in the reference frame and the neighboring frame to measure
the photometric consistency:

Lmvrgb =
1

V

∑
pr∈V

(1−NCC(Ir(pr), In(Hrnpr))), (10)

where V is the set of all pixels in the image, excluding
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TABLE I: Quantitative results of rendering quality for novel view synthesis on Mip-NeRF360 dataset. ”Red”, ”Orange” and ”Yellow” denote the best,
second-best, and third-best results. PGSR achieves results close to 3DGS and outperforms similar reconstruction method SuGaR.

Indoor scenes Outdoor scenes Average on all scenes
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

N
eR

F-
ba

se
d NeRF [41] 26.84 0.790 0.370 21.46 0.458 0.515 24.15 0.624 0.443

Deep Blending [20] 26.40 0.844 0.261 21.54 0.524 0.364 23.97 0.684 0.313
INGP [44] 29.15 0.880 0.216 22.90 0.566 0.371 26.03 0.723 0.294

M-NeRF360 [2] 31.72 0.917 0.180 24.47 0.691 0.283 28.10 0.804 0.232
Neus [56] 25.10 0.789 0.319 21.93 0.629 0.600 23.74 0.720 0.439

G
S-

ba
se

d 3DGS [27] 30.99 0.926 0.199 24.24 0.705 0.283 27.24 0.803 0.246
SuGaR [19] 29.44 0.911 0.216 22.76 0.631 0.349 26.10 0.771 0.283
2DGS [21] 30.39 0.923 0.183 24.33 0.709 0.284 27.03 0.804 0.239
GOF [69] 30.80 0.928 0.167 24.76 0.742 0.225 27.78 0.835 0.196

PGSR 30.41 0.930 0.161 24.45 0.730 0.224 27.43 0.830 0.193

Fig. 9: Multi-view photometric and geometric loss.

those with high forward and backward projection errors.
3) Geometric Regularization Loss: Finally, the geomet-

ric regularization loss includes single-view geometric, multi-
view geometric, and multi-view photometric consistency con-
straints:

Lgeo = λ2Lsvgeo + λ3Lmvrgb + λ4Lmvgeom. (11)

C. Exposure Compensation Image Loss

Due to changes in external lighting conditions, cameras may
have different exposure times during different shooting mo-
ments, leading to overall brightness variations in images. The
original 3DGS does not consider brightness changes, which
can result in floating artifacts in practical scenes. To model
the overall brightness variations at different times, we assign
two exposure coefficients, a and b, to each image. Ultimately,
images with exposure compensation can be obtained by simply
computing with exposure coefficients:

Ia
i = exp(ai)I

r
i + bi, (12)

where Ir
i is the rendered image and Ia

i is the exposure-
adjusted image. We employ the following image loss:

Lrgb = (1− λ)L1(Ĩ − Ii) + λLSSIM (Ir
i − Ii). (13)

Ĩ =

{
Ia
i , if LSSIM (Ir

i − Ii) < 0.5

Ir
i , if LSSIM (Ir

i − Ii) >= 0.5
(14)

where Ii is the ground truth image. The L1 loss constraint
ensures that the exposure-adjusted image is consistent with the

ground truth image, while the SSIM loss requires the rendered
image to have similar structures to the ground truth image. To
enhance the robustness of exposure coefficient estimation, we
need to ensure that the rendered image and the ground truth
image have sufficient structural similarity before performing
the estimation. After training, Ir

i is required to be globally
consistent and maintain structural similarity with the ground
truth image, while Ia

i can adjust the brightness of images to
match the ground truth image perfectly.

D. Training

In summary, our final training loss L consists of the image
reconstruction loss Lrgb, the flattening 3D Gaussian loss Ls,
the geometric loss Lgeo:

L = Lrgb + λ1Ls +Lgeo. (15)

We set λ1 = 100. For the image reconstruction loss, we set
λ = 0.2. For the geometric loss, we set λ2 = 0.01, λ3 = 0.2,
and λ4 = 0.05.

V. EXPERIMENTS

Datasets: To validate the effectiveness of our method, we
conducted experiments on various real-world datasets, includ-
ing objects, and indoor and outdoor environments. We chose
the widely used MiP-NeRF360 dataset [2] for evaluating novel
view synthesis performance. The large and complex scenes
of the TnT [28] and 15 object-centric scenes of the DTU
dataset [23] were selected to assess reconstruction quality.

Evaluation Criterion: We chose three widely used image
evaluation metrics to validate novel view synthesis: peak
signal-to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM), and the learned perceptual image patch similarity
(LPIPS) [70]. For assessing surface quality, we employed the
F1 score and chamfer distance.

Implementation Details: Our training strategy and hy-
perparameters are generally consistent with 3DGS [27]. The
training iterations for all scenes are set to 30,000. We adopt
the densification strategy of AbsGS [67]. The learning rate
for the exposure coefficient is 0.001. We begin by rendering
the depth for each training view, followed by utilizing the
TSDF Fusion algorithm [45] to generate the corresponding
TSDF field. Subsequently, we extract the mesh [38] from the
TSDF field. We only utilize the exposure compensation on the
Tanks and Temples dataset. All experiments in this paper are
conducted on Nvidia RTX 4090 GPU.
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TABLE II: Quantitative results of chamfer distance(mm)↓ on DTU dataset [23]. PGSR achieves the highest reconstruction accuracy and is over 100 times
faster than the SDF method based on NeRF.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

VolSDF [60] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 > 12h
NeuS [56] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 > 12h

Neuralangelo [33] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 > 128h

SuGaR [19] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 1h
2DGS [21] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 0.32h
GOF [69] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 2h
PGSR(DS) 0.34 0.58 0.29 0.29 0.78 0.58 0.54 1.01 0.73 0.51 0.49 0.69 0.31 0.37 0.38 0.53 0.6h

PGSR 0.31 0.52 0.27 0.27 0.76 0.54 0.49 0.98 0.69 0.49 0.46 0.56 0.28 0.35 0.36 0.49 1.0h

TABLE III: Quantitative results of F1 Score↑ for reconstruction on Tanks
and Temples dataset. PGSR achieves similar reconstruction accuracy to
Neuralgangelo, but our training speed is over a hundred times faster.

NeuS Geo-Neus Neurlangelo SuGaR 2D GS GOF PGSR
Barn 0.29 0.33 0.70 0.14 0.36 0.51 0.66
Caterpillar 0.29 0.26 0.36 0.16 0.23 0.41 0.41
Courthouse 0.17 0.12 0.28 0.08 0.13 0.28 0.21
Ignatius 0.83 0.72 0.89 0.33 0.44 0.68 0.80
Meetingroom 0.24 0.20 0.32 0.15 0.16 0.28 0.29
Truck 0.45 0.45 0.48 0.26 0.26 0.58 0.60
Mean 0.38 0.35 0.50 0.19 0.30 0.46 0.50
Time >24h >24h >128h 2h 34.2 m 2h 1.2h

A. Real-time Rendering

For the validation of rendering quality, we follow the
3DGS method and conduct validation on the Mip-NeRF360
dataset [2]. We compare with current state-of-the-art meth-
ods for pure novel view synthesis as well as similar re-
construction methods to ours, including NeRF [41], Deep
Blending [20], INGP [44], Mip-NeRF360 [2], NeuS [56],
3DGS [27], SuGaR [19], 2DGS [21], and GOF [69]. As shown
in Table I and Fig. 5, compared to the current state-of-the-
art methods, our approach not only provides excellent surface
reconstruction quality but also achieves outstanding novel view
synthesis results.

B. Reconstruction

We compared our method, PGSR, with current state-of-the-
art neural surface reconstruction methods including NeuS [56],
Geo-NeuS [15], and NeuralAngelo [33]. We also compared it
with recently emerged reconstruction methods based on 3DGS,
such as SuGaR [19], 2DGS [21], and GOF [69]. All results
are summarized in Fig. 5, Fig. 7, Fig. 8, Table II and Table III.

The DTU dataset: Our method achieves the highest
reconstruction accuracy with relatively fast training speed.
PGSR(DS) denotes downsampling to half the original image
size for training. Our method significantly outperforms other
3DGS-based reconstruction methods. As shown in Fig. 7, our
surfaces are smoother and contain more details.

The TnT dataset: The F1 score of PGSR is similar to
NeuralAngelo and better compared to other current reconstruc-
tion methods. Our training time is over 100 times faster than
NeuralAngelo. Moreover, compared to NeuralAngelo, we can
reconstruct more surface details.

C. Ablations

Our Unbiased Depth: From Fig 10, it can be observed that
our overall geometric structure appears smoother and more

Fig. 10: The qualitative comparison of our unbiased depth method with
the previous depth method [11], [24] is depicted in the normal map. Our
overall geometric structure appears smoother and more precise.

TABLE IV: Ablation study on the Meetingroom of TnT dataset.

Model setting F1-Score↑ PSNR↑

w/o Single-view 0.26 27.46
w/o Multi-view 0.15 28.14

w/o Our unbiased depth 0.20 26.80

Full model 0.29 27.30

precise, especially in flat regions. Table IV also demonstrates
that our depth rendering method achieves higher reconstruction
and rendering accuracy.

Single-View and Multi-view Regularization: The single-
view regularization term can provide a good initial geometric
accuracy without relying on multi-view information. When
single-view regularization is removed, the reconstruction ac-
curacy decreases. Multi-view regularization effectively con-
strains the consistency of geometry between multiple views,
improving overall reconstruction accuracy. From Table IV,
it is evident that multi-view regularization is crucial for
reconstruction accuracy.

Exposure Compensation: We validated the exposure com-
pensation on the Ignatius series of the TnT dataset. As shown
in Table V, exposure compensation enhances reconstruction
and rendering quality.

D. Virtual Reality Application

As shown in Fig. 11, we used our method to separately
reconstruct the original materials. We then extracted the exca-
vator and Ignatius using masks and placed them in the garden
scene. By rendering the scene and objects separately and using

TABLE V: Ablation study on exposure Compensation.

Model setting F1-Score↑ PSNR↑

w/o exposure modeling 0.76 21.71
w exposure modeling 0.80 25.77
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Fig. 11: Virtual Reality Application. (a) Original materials, including
garden scene, excavator, and Ignatius. (b) A Virtual Reality effect showcase
synthesized from these original materials.

our rendered depth to determine occlusion relationships, we
achieved immersive, high-fidelity virtual reality effects with
high-precision depth estimation.

VI. LIMITATIONS AND FUTURE WORK

Although our PGSR efficiently and faithfully performs geo-
metric reconstruction, it also faces several challenges. Firstly,
we cannot perform geometric reconstruction in regions with
missing or limited viewpoints, leading to incomplete or less ac-
curate geometry. Exploring methods to improve reconstruction
quality under insufficient constraints using priors is another
avenue for further investigation. Secondly, our method does
not consider scenarios involving reflective surfaces or mirrors,
so reconstruction in these environments will pose challenges.
Integrating with existing 3DGS work that accounts for reflec-
tive surfaces would enhance reconstruction accuracy in such
scenarios. Finally, we found that there are some floating points
in the scene, which affect the rendering and reconstruction
quality. Integrating more advanced 3DGS baselines [39] would
help further enhance overall quality.

VII. CONCLUSION

In this paper, we propose a novel unbiased depth rendering
method based on 3DGS. With this method, we render the
plane geometry parameters for each pixel, including normal,
distance, and depth maps. We then incorporate single-view and
multi-view geometric regularization, and exposure compensa-
tion model to achieve precise global consistency in geometry.
We validate our rendering and reconstruction quality on the
MipNeRF360, DTU, and TnT datasets. The experimental
results indicate that our method achieves the highest geometric
reconstruction accuracy and rendering quality compared to the
current state-of-the-art methods.
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Fig. 12: Qualitative comparisons in surface reconstruction between PGSR, 2DGS, and GOF on the DTU dataset.
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Fig. 13: Qualitative comparisons in surface reconstruction between PGSR, 2DGS, and GOF on the DTU dataset.
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Fig. 14: Qualitative comparisons in surface reconstruction between PGSR, 2DGS, and GOF on the DTU dataset.



16

PG
SR

2D
G
S

G
O
F

In
pu
t

Fig. 15: Qualitative comparisons in surface reconstruction between PGSR, 2DGS, and GOF.
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(a) Rendered RGB (b) Mesh (c) Mesh Normal

Fig. 16: PGSR achieves high-precision geometric reconstruction in various indoor and outdoor scenes from a series of RGB images without requiring any
prior knowledge.
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