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1 Compare with Related Works

1.1 Compare with PatchFlow.

Different from PatchFlow [3] that performs complicated multiview refinement by interpolating
previously estimated two-view local patch flows, the proposed refinement strategy is simple yet
effective in achieving consistent matches for 3D model refinement. Given a coarse 3D model, we
keep the selected reference node of each feature track fixed and search around each query node for
the fine-level match by the transformer-based matching module. The advantages are that our graph
structure is significantly simpler than PatchFlow, which is efficient for matching, and we do not need
to store and interpolate dense flow fields for optimization.

1.2 Compare with PixSfM.

The main difference between our refinement module and PixSfM [8] is that we leverage fine-level
matching with the transformer to refine the 2D locations of coarse feature tracks and then optimize the
3D model with geometric error, while PixSfM uses pre-stored dense feature maps and feature-metric
BA to refine the 3D model and 2D keypoints globally. Our advantage is the more accurate refinement
thanks to the transformed features. Moreover, we are more memory efficient by avoiding feature
or cost map storage in the BA stage. Please refer to Sec. 5.3 for more qualitative and quantitative
comparison results.

2 Method Details

2.1 Keypoint-Free SfM

Reference nodes selection strategy. The proposed keypoint-free SfM establishes 3D structures in
a coarse-to-fine manner. It first reconstructs a complete 3D model leveraging the semi-dense matches
of the coarse-level LoFTR, then refines the initial 3D model to higher accuracy. We refine the initial
point cloud by refining “keypoints” in the coarse feature tracks to sub-pixel accuracy and optimize
the point cloud based on the refined feature tracks. The fine-level LoFTR is used for coarse feature
track refinement, which refines all points in a feature track with Transformers with reference to a
fixed reference point.

We find that the fine-level LoFTR is robust and insensitive to the reference point selection strategy.
This is reasonable since the fine-level LoFTR is exactly trained to find a sub-pixel correspondence on
a local feature patch for an arbitrarily given feature point. Consequently, we design the reference
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node selection strategy mainly for the ease of implementation and lower memory consumption. To
refine all feature tracks with the fine-level LoFTR, we need to extract fine-level CNN feature maps
for all images and store them for further use. This would take a ton of storage, varied according to
the total number of frames, which can hardly fit into the RAM of consumer-grade GPUs.

To make our reconstruction pipeline broadly usable, we treat an image, instead of a feature track,
as the minimum processing unit. More specifically, we recursively select the frame containing the
maximum number of “keypoints” (i.e., involved in the most feature tracks), and select all “keypoints”
in this frame as the fixed reference nodes of their belonging feature tracks. All feature tracks in
the selected frame are then refined, and marked as processed. We repeat this process untill all
feature tracks are refined. This strategy avoids the need to store dense feature maps of all frames and
minimizes the number of frames whose feature maps are repeatedly extracted.

2.2 Object Pose Estimation

Positional encoding. We apply positional encoding modules on top of the coarse 3D features
F̃3D ∈ RN×Dc and 2D feature maps F̃2D to make them position-dependent, which is proved to
boost the matching performance [11, 14]. Because the 2D-3D matching involves two modalities,
we use the standard sinusoidal encoding for the 2D feature maps and leverage a learned positional
encoding for the 3D features. More specifically, for the 3D features, we embed the normalized 3D
coordinates x3D ∈ RN×3 into a high-dimensional vector with an MLP:

F̃′
3D = F̃3D +MLPpe(x3D). (1)

For the 2D feature maps, we use a 2D extension of the standard sinusoidal positional encoding
proposed in Transformers following DETR [1]:

PE i
x,y = f(x, y)i :=


sin (ωk · x) , i = 4k
cos (ωk · x) , i = 4k + 1
sin (ωk · y) , i = 4k + 2
cos (ωk · y) , i = 4k + 3,

(2)

where ωk = 1
100002k/d , d is the number of feature channels on which positional encoding is applied, i

is the index of the feature channel.

The positional encoding modules enable the later attention modules to jointly reason about visual
appearances and positions, benefiting 2D-3D matching. Note that the positional encodings are only
applied once before the first attention module.

Attention module. Directly using the vanilla Transformer [16] to our model is not applicable
because its computation cost grows quadratically with the length of input features. Following
[14], we use the Linear Transformer [4] to efficiently transform 2D and 3D features. It reduces
the computational complexity of the Transformer [16] from O(N2) to O(N) by substituting the
exponential kernel with an alternative kernel function sim(Q,K) = ϕ(Q) · ϕ(K)T,where ϕ(·) =
elu(·) + 1. Please refer to the original paper [4] for more details.

We denote a set of self- and cross-attention layers as an attention block:
F′(l+1)

2D = SelfAtten(F
(l)
2D,F

(l)
2D),

F′(l+1)
3D = SelfAtten(F

(l)
3D,F

(l)
3D),

F
(l+1)
2D ,F

(l+1)
3D = CrossAtten(F′(l+1)

2D ,F′(l+1)
3D ).

(3)

The indices of intermediate features are indicated by ·(l). F′ represents an intermediate feature
processed by a self-attention layer. Our attention module sequentially performs the attention block
Nc = 3 times to transform the 3D and 2D features.

Supervision. We jointly train the coarse and fine modules in our 2D-3D matching framework with
different supervisions. We project the observable 3D points to the 2D frame to build the ground-truth
2D-3D correspondences Mf

gt for our fine-level matching module. For the coarse matching module,
we round the projected 2D points to their nearest grid points to obtain the ground-truth coarse 2D-3D
correspondences Mc

gt. We optimize the coarse module by minimizing the focal loss [7] between the
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Figure 1: CAD models in the proposed OnePose-LowTexture dataset. We capture CAD models
for a subset of eight objects from the OnePose-LowTexture dataset. These CAD models can be used
to train Instance-level methods such as PVNet [9] and CDPN [6] and enable further comparisons
between CAD-model-free methods and CAD-model-based methods.

predicted matching probability matrix Pc and the ground truth Pc
gt constructed with Mc

gt similar
to [11, 14]:

Lc =
1

|Pc
gt|

∑
j,q

FL(Pc(j, q)), (4)

FL(Pc(j, q)) =

{
−α(1− Pc(j, q))γ log(Pc(j, q)), if Pc

gt(j, q) = 1

−(1− α)Pc(j, q)γ log(1− Pc(j, q)), if Pc
gt(j, q) ̸= 1

For the fine module, we use a ℓ2 loss to minimize the distances between the predicted 2D coordinates
ûq and the ground truth ûq

gt. Following [17, 14], we make our loss uncertainty-weighted with a
variance term σ2(q):

Lf =
1

|Mf |
∑

q∈Mf

1

σ2(q)

∥∥ûq − ûq
gt

∥∥
2
. (5)

Notably, we detach σ2(q) during training to prevent the network from decreasing the loss by increasing
the variance. The total loss is the weighted sum of the coarse and fine losses L = ωcLc + ωfLf . In
the experiment, α is 0.5, γ is 2.0, ωc is 1.0 and ωf is 1.0.

3 OnePose-LowTexture Dataset

In this section, we provide more details of the proposed OnePose-LowTexture evaluation dataset.
This test dataset is used for the evaluation, and there are no training objects. It contains 80 sequences
of 40 household low-textured objects. For each object, two video sequences with object poses and
annotated object 3D bounding boxes are provided. Video sequences of each object are captured with
different backgrounds, simulating the real-world using scenario. Each video is recorded at 30 fps for
about 30 seconds in 1920× 1440 resolution. The total number of images in the reference sequences
is 35521, and the total number of images in the query sequences is 32477.

The data capture and annotation pipeline follow the setup of OnePose [15]. The camera poses
provided by ARKit can be transformed into the object-centric coordinate system induced from the
user-annotated object 3D bounding boxes. Following [15], we align multiple captured sequences of
an object with the annotated object 3D bounding boxes. Then, we perform a bundle adjustment with
COLMAP to reduce the pose drift of ARKit and inconsistency between 3D bounding box annotations
in multiple sequences. This offline optimization process leads to more consistent 3D bounding box
annotations across sequences and more accurate object poses.

To compare with instance-level methods such as PVNet [9] and CDPN [6], we additionally capture
high-quality 3D CAD models for a selected subset of ten objects from the OnePose-LowTexture
dataset. We use the SHINING(R) scanner for the CAD model capturing. Fig. 1 illustrates all captured
CAD models.

4 Experiment Details

4.1 Training Details

Our model is trained on the OnePose [15] training set, which contains 49 objects. We first reconstruct
the semi-dense object point cloud with our keypoint-free SfM for each object using all training
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Table 1: Use feature matching as the 2D object detector.
2D Detector Type Method OnePose dataset

1cm-1deg 3cm-3deg 5cm-5deg

GT box Ours 51.1 80.8 87.7
OnePose 49.7 77.5 84.1

Feature matching detector Ours 49.6 80.0 87.1
OnePose 47.3 77.0 83.9

Table 2: Compare with HLoc using different feature matching methods.
Method OnePose-LowTexture dataset

1cm-1deg 3cm-3deg 5cm-5deg
Ours 16.8 57.7 72.1

HLoc (LoFTR) 15.4 43.7 53.4
HLoc (SPP + SPG + Patch2Pix) 10.1 37.2 47.6

HLoc (SPP + SPG) 13.8 36.1 42.2
HLoc (DualRC-Net) 11.3 37.0 47.8

HLoc (NC-Net + Patch2Pix) 2.42 19.0 30.4

sequences with 5x downsampled video frames. Then we leverage the 2D-3D correspondences
computed from the annotated poses and the reconstructed 3D model to train our sparse-to-dense
2D-3D matching module. Note that we compute the rough 2D object bounding boxes from the
annotated 3D bounding boxes in the dataset and use the cropped images for reconstruction and
training, following OnePose [15].

4.2 Metrics

We use the commonly used cm-degree pose error, the ADD(S) and the Proj2D metrics to evaluate the
estimated object poses. We follow PixSfM [8] to evaluate the reconstructed object point cloud.

cm-degree metric. For a predicted pose, the rotation error and translation error are computed
separately. A predicted pose is considered correct if both its rotation error and translation error are
less than a threshold.

Proj2D metric. The Proj2D metric computes the mean distance between the projection of 3D
model points with given predicted and ground truth object poses. The estimated pose is considered
correct if the mean projection distance is less than 5 pixels.

ADD metric. We first transform the 3D model points with the ground truth and the predicted poses.
Then we compute the ADD metric using the mean distance between two transformed point sets. The
pose is regarded as correct if the mean distance is less than 10% of the object diameter. Note that for
symmetric objects, we use the ADD(S) [18] metric for evaluation.

Point cloud accuracy. We evaluate the point cloud accuracy in the ablation studies, following the
metric in [8, 13]. The accuracy is defined as the percentage of reconstructed points which are within
a distance threshold (e.g., 3mm) with reference to the ground truth point cloud. We use vertices of the
scanned object meshes as the ground truth point clouds.

4.3 Runtime Analyses of Keypoint-Free SfM

We evaluate the runtime of each part in the proposed keypoint-free SfM. The experiment is conducted
on a server with two Intel(R) Xeon Gold 6146 CPU and an NVIDIA-V100-32GB GPU. We illustrate
the runtime analyses with only one object instance below. The overall runtime varies according to
several factors, such as image resolutions, the number of images used for reconstruction, and the
number of successfully built coarse matches. For a video sequence with 193 images in 512× 512
resolution, it takes 135s to perform sequential coarse matching on 1436 image pairs and 40s to load
all coarse matches and perform the triangulation [12]. Then, we perform fine matching between 1122
image pairs from the scene graph of coarse reconstructions to refine the feature tracks, which takes
171s. Finally, we optimize the object point cloud, which only consumes 1.03s.
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Table 3: Compare with PixSfM.
Point cloud accuracy Pose error on OnePose dataset Feature storage cost1mm 3mm 5mm 1cm-1deg 3cm-3deg 5cm-5deg

LoFTR coarse + Our refinement 30.9 75.8 87.7 51.1 80.8 87.7 -
LoFTR coarse + PixSfM 29.5 73.0 85.9 48.2 79.6 86.7 7.35GB

LoFTR coarse + PixSfM (cost map) 27.9 69.7 82.9 47.9 79.2 86.7 0.17GB

Original Image

Ours local feature
cost maps

PixSfM local feature
cost maps

Figure 2: Visualization of local feature patch cost maps of our refinement and PixSfM [8]. Note
that small block ( ) means a cost map around a coarse match.

5 More Experiments

5.1 Using feature matching as the object detector

The need for an off-the-shelf 2D object detector can be eliminated by leveraging 2D-2D feature
matching. This issue has been explored in OnePose [15]. Following OnePose, We first perform
multiple 2D-2D feature matching between reference-query image pairs and then select the image pair
with the most inliers to estimate 2D affine transformation. The region of interest (RoI) in the query
image is then detected by transforming the corner of RoI in the reference image with the estimated
transformation. To validate the effectiveness of this method, we present the evaluation results on the
OnePose dataset with the feature-matching-based 2D detector below. For a fair comparison with
OnePose, we use the same 2D bounding boxes, which are detected by SuperPoint [2] extractor and
SuperGlue [11] matcher. The results in Tab. 1 demonstrate that the performance of the proposed
method does not degrade significantly compared with using the ground truth bounding box as the 2D
detector.

5.2 Compare with HLoc using different feature matching methods

In this part, we conduct experiments to compare our method with HLoc [10] combined with different
feature matching and SfM methods, including LoFTR [14], DualRC-Net [5], Patch2Pix [19], on the
OnePose dataset. We use the cm-degree pose accuracy metric with different thresholds for evaluation.
Note that for the comparison with LoFTR, we use the strategy proposed by the original paper that
round matches to grid level for SfM. As for Patch2Pix, we follow their points quantization strategy to
yield repeatable matches for SfM. Please refer to their papers for more details. The results shown in
Tab. 2 demonstrate the superiority of our method.

5.3 Compare with PixSfM

We compare the refinement module in our SfM framework with PixSfM [8] by the reconstruction
and pose estimation accuracy. Results are shown in Tab. 3. Point cloud accuracy is evaluated on the
objects with ground-truth meshes in the OnePose-LowTexture dataset, and pose estimation accuracy
is evaluated on the OnePose dataset. The results demonstrate that the 3D models reconstructed by
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Table 4: More ablation results.
OnePose dataset Time1cm-1deg 3cm-3deg 5cm-5deg

Full (Nc = 3, Nf = 1, use all 3D points) 51.1 80.8 87.7 88.2ms
w/o Position Encoding 49.0 79.7 86.5 87.6ms

Large model (Nc = 6, Nf = 2) 48.1 78.5 85.5 133ms
Sample 7000 3D points 48.0 79.5 86.7 57.4ms
Sample 3000 3D points 47.1 78.6 86.1 42.7ms

our refinement achieve higher accuracy, and our refinement also brings improvement for the object
pose estimation. As visualized in Fig. 2, we attribute the improvement to the more discriminative
features (cost maps) obtained by our transformer-based fine-level matching module. Moreover, our
refinement is more memory efficient since we do not need to keep the dense feature map or coat map
in memory for the bundle adjustment.

5.4 More Ablation Studies

We further conduct additional ablation studies on variants of the 2D-3D matching network architec-
tures and different numbers of 3D points used for pose estimation.

Ablation study on 2D-3D matching network architectures. The results of a large model with
more attention layers and a model without positional encoding are shown in Tab. 4. Increasing the
number of attention layers by twice barely changes the results.

Different numbers of 3D points. We evaluate the effect of using different numbers of 3D points
for object pose estimation. The results are illustrated in Tab 4. Our full model uses all reconstructed
3D object points for pose estimation, obtaining the highest accuracy. Decreasing the number of points
with subsampling leads to minorly degraded pose estimation accuracy and faster inference speed.
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