InstaScene: Towards Complete 3D Instance Decomposition and
Reconstruction from Cluttered Scenes
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Figure 1. Novel view rendering for segmented instances. We present segmentation results on the LERF-Mask Dataset [7], including the
original segmentation masks, cross-view associated masks, and the final optimized feature field. Instances with the same label are marked
using the same color. Additionally, we extract representative instances from each scene, demonstrating that our method can even capture
fine-grained details such as camera straps.

In this supplementary material, we provide more details
of our InstaScene framework, including: 1) Implementation
details of our fine-grained scene decomposition (Sec. 1); 2)
Additional results on various datasets (Sec. 2, 3, 4, 5, 6); 3)
Implementation details of our in-situ generation (Sec. 7); 4)
Extended quantitative comparison and user study of the in-
situ generation (Sec. 8, 9). 5) Failure cases arising from the
limitation of our method (Sec. 10). Additionally, we pro-
vide a supplemented video to summarize our method and
provide more intuitive visualizations and the demonstration
of scene interaction.

1. Implementation Details of Decomposition

We follow the default training settings of 2DGS [5] to
obtain pre-trained Gaussian models from the given posed
RGB frames of the scene. We use EntitySeg with the

(d) Semantic Gaussian Points

CropFormer-Hornet-L backbone [11] to obtain 2D instance
segmentation. For filtering under-segmented masks, we
consider if the spatial tracker P; ; of mask m; ; intersects
with multiple spatial trackers { P} from the same frame
I}, and the highest overlap rate, defined as Toperiap =

P; iNP; . . .
maxi [P 0Pkl i Jess than 0.8 of the total intersection area,
Zz|Pz,JﬁPk,l|

and this situation occurs in 30% of the frames where P ; is
visible, then the mask m; ; is marked as under-segmented.

We employ the Adam optimizer with a learning rate of
2.5x 1072 to train Gaussian’s feature. For contrastive learn-
ing, we randomly sample 32 x 1024 pixels on a single view
while simultaneously sampling 64 x 1024 points from the
global instance priors M3? that are visible within the cur-
rent view. For the multi-view supervision, we randomly
sample 64 x 1024 pixels from the current frame and its
adjacent views {I; | j € [i — k,i + K|} for every 5 iter-
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ations, where £ = 2. For the hyperparameters in Eq. 7 of
the main paper, we set A\; = 1 X 1076, Ay = 1 x 1076,
A3 = 2.5 x 1076, The pre-training process which estab-
lishes the cross-view masks with traced Gaussian clustering
takes approximately 5 minutes. We randomly initialize the
feature embeddings of each Gaussian point {f?¢ € RP}
and train the feature field for 10,000 iterations, with the
entire process averaging 20 minutes on an NVIDIA Tesla
A100-40GB. With the trained GS feature field, our method
supports real-time interactive segmentation at 1K resolution

(c) Optimized Feat. Field
Figure 2. Additional visualization for decomposition results. We present the instance segmentation results on the ZipNeRF dataset [1].

We accurately establish cross-view mask associations and subsequently optimize the distinguishable feature field. The final semantic
Gaussian points obtained are also illustrated as described above.
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with 100+FPS on an RTX 4070-12GB GPU, please see the
supp. video for further details.

2. Additional Results for Scene Decomposition

We present additional results on the LERF-Mask
Dataset [7] and the ZipNeRF Dataset [1] as shown in
Fig. 1, 2. We achieve cross-view mask association based on
the traced Gaussian clustering and obtain distinguishable
feature fields. Note that not every predicted segmentation
mask is retained in the cross-view association as we only
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Figure 3. Additional Comparlson on 3D-OVS Dataset. The 3D-
OVS Dataset fails to effectively highlight the differences between
different methods due to the simplicity of the scenes.

Method Bench Bed Room Sofa Lawn Average

Langsplat 952 971 943 951 959 95.5

GSGrouping 89.7 97.5 945 943 947 94.1

Ours 953 969 96.5 954 96.2 96.0
Table 1. Quantitative comparison on 3D-OVS Dataset. All
methods exhibit favorable performance on the 3D-OVS dataset.

Figure 4. Compal"lson with other mask association methods
Object tracking and CLIP-based matching methods both under-
perform in cluttered scenes with duplicate objects.

retain masks within each cluster that exhibit a relatively
large overlap area with other masks, which helps to filter
out unreliable 2D segmentation. We also extract the
corresponding Gaussian points of several representative in-
stances from each scene and perform novel view rendering
as shown in the last column of Fig. 1. As illustrated in the
Figurine scene in Fig. 1, our method successfully preserves
fine-grained details, such as the camera strap at the last
row marked in red, thereby further demonstrating the high
precision of our scene decomposition approach.

3. Comparisons on the 3D-OVS Dataset

Following Langsplat [12], we conduct additional compar-
isons on the 3D-OVS Dataset [8], which comprises scenes
composed of simple objects manually arranged, without
repetitive objects or cluttered environments. As the results
shown in Fig. 3 and Tab. 1, both our method and the base-
line approaches achieve favorable performance. In contrast,
as illustrated in Fig. 6 of the main paper, we further conduct
experiments on the more complex indoor scenes from the
ZipNeRF Dataset, further demonstrating the robustness of
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Flgure 5. Vlsuallzatlon of Edge Cases. The integration of Gaus-
sian tracker with spatial contrastive learning effectively addresses
challenging edge cases involving repetitive or textureless objects,
while also mitigating under-segmentation issues present in the 2D
segmentation prior.

Figure 6. The 3D segmentation under sparse views input. Our
method is capable of performing accurate 3D scene segmentation
even under extremely sparse input views.
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Figure 7. Visualization of Background Inpainting.

our approach.

4. Comparison with Other Mask Association

Our spatial tracker establishes cross-view and global 3D as-
sociation by tracing spatial relationships among Gaussians,
which also filters out 2D under-segmentation. We compare
other commonly used cross-view mask association strate-
gies, such as object tracking (e.g., SAM2) and CLIP-based
matching. As shown in Fig. 4, both methods underperform
in cluttered scenes with duplicate objects.

5. Visualization of More Edge Cases

We present additional results addressing real-world chal-
lenges such as repetitive textureless objects and severe oc-
clusions to further demonstrate the robustness of our seg-
mentation method as shown in Fig. 5. Our method is ac-
tually the first to explicitly address them by: 1) Using a
strong instance-level 2D segmentation model which inher-



Flgure 8 Optimal viewpoints selection. The viewpoints marked
in red undergo minimal occlusion by the scene and are selected as
ideal viewpoints. The viewpoints marked in pink are significantly
occluded and we classify them as unseen views that need to be
supplemented by the generative model.

ently distinguishes repetitive or textureless objects; 2) Clus-
tering multi-view consistent 2D segmentation masks and fil-
ter under-segmentation (see view3 semantic masks shown
in Fig. 5) to ensure reliable supervision; 3) Learning dis-
tinctive features via spatial contrastive learning with the
enhanced 2D semantic labels, no feature distillation from
DINO & CLIP is required, thus can handle repetitive ob-
jects that are frustrating for pre-trained VLMs.

As shown in Fig. 6, our method leverages spatial corre-
lations, enabling robust 3D segmentation even with a very
limited number of input views (We first perform Gaussian
Splatting reconstruction with dense input views, then eval-
uate with varying numbers of 2D segmentation maps as in-
put.).

6. Background Inpainting

Although our work primarily focuses on completing un-
observed foreground regions, Since background inpaint-
ing (object removal) has been widely studied, followed by
existing methods (e.g., GSGrouping [17], GSEditor [2],
VRGS [6]), given rendered views, we first extract object
masks with the learned feature field and feed them into Pow-
erPaint [18] for 2D object removal. The inpainting results
are subsequently used to refine the neighboring Gaussians
for background inpainting as shown in Fig. 7.

7. Implementation Details of In-situ Genera-
tion

Occlusion-aware Optimal View Selection. We present an
intuitive visualization of the optimal viewpoint selection for
each instance used as input for in-situ generation in Fig. 8.
We refer to the target view setup in [10] and select 16 view-
points centered around the segmented object, from an eleva-
tion of 30 degrees, with the azimuth linearly spaced across
360 degrees. Additionally, we adopt the standard intrin-
sic settings used for rendering [3] as training data [9, 10].
We consider the viewpoint with the least occlusion by the
scene as the optimal input. Specifically, given a viewpoint
m;, we render its depth based on the Gaussian points of both
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Figure 9. Complement target views with known features. We
employ geometric projection to map the known observations onto
the target view, further constraining the regions with known infor-
mation and enhancing consistency across generated target views.

Known Views

the segmented instance and the scene. If 85% of the dif-
ference between the instance depth and the scene depth is
less than 0.05, we classify the viewpoint as not occluded by
the scene and include it in the set of optimal views. The re-
maining viewpoints are considered unseen and require the
generative model to supplement.

Joint Optimization. After obtaining the viewpoints sup-
plemented by the 3D generative prior, we perform joint op-
timization with the source observations. For the joint opti-
mization, we maintain the same learning rate for each Gaus-
sian parameter as [5] and train each instance for 2,000 steps,
which takes approximately 30s on an NVIDIA Tesla A100-
40GB.

Complement Known Features via Geometry Cues. As
depicted in Fig. 9, we add time-dependent noise to the la-
tent features of the input views, and leverage the known ge-
ometry (i.e., rendered depths of input views) to project the
known latent features onto the visible regions of the target
views, while initializing the invisible regions with random
noise. This approach enforces multi-view consistency in
the visible regions throughout the diffusion process while
simultaneously guiding the denoising of more plausible re-
sults in the invisible regions, and also enhances the utiliza-
tion of available reconstructed information without altering
the structure of the generative model.

Alignment with Scene. To align the results generated by
the baselines [4, 15, 16] with the original scene, as the rel-
ative camera poses are known when generating multiple
views [4, 14] in InstantMesh [16] and MVDFusion [4], for
MVDFusion, we project the generated RGB-D images into
the scene coordinate system according to the relative poses,
converting them into pointcloud, and scale it based on the
radii of instance. For InstantMesh, we normalize the gener-
ated mesh and project it into the scene using the transforma-
tion relationship between the actual scene and its coordinate
system. Since the coordinate system of SpaRP [15] is un-
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Figure 10. Ambiguity in completion. While varying seeds produce different outcomes, the results converge as input views increase.

Methods InstantMesh [16] SpaRP [15]  Ours
Alignment 1 1.936 1.251 2.813
Faithful Comp. 1 2.019 1.398 2.583

Table 2. User Study. Our method outperforms in both alignment
and faithful completion evaluation.

known, we manually align the generated mesh to the scene.

8. Ambiguity in Completion

As shown in Fig. 10, object completion is inherently am-
biguous. While varying seeds produce different outcomes,
the results converge as input views increase.

9. Additional Results of In-situ Generation

We present additional examples of in-situ generation as
shown in Fig. 12. We put the reconstructed results from
each method back into the original scene to demonstrate the
alignment to the real-world scans. Additionally, we show-
case the plausibility of the reconstructed unseen regions.
Our method recovers the unseen regions while preserving
the most realistic rendering quality. We also conduct quan-
titative comparisons on the user study and demonstrate su-
perior outcomes as shown in Tab. 2. We ask 30 users to sort
20 testing instances in random order based on the alignment
with the original scene and the faithful completion of un-
seen regions from both appearance rendering and geometry,
and assign the scores by their ranking (i.e., with a score of
3 for the ordered best one and a score of 1 for the last one)
following TEXTure [13].

10. Failure Cases Arising from the Limitations

As mentioned in conclusion, if the scene itself cannot be
well reconstructed by Gaussian Splatting (limited viewing
angles of the input images or challenging material of the ob-
ject itself make reconstruction difficult), low-quality novel
view rendering of segmented objects will affect the gener-
ative model when used as condition images (as shown in
Fig. 11). Optimizing GS reconstruction is beyond the scope
of our research.
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