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In this supplementary document, we provide implementation details,
training details, and single-view results.

A IMPLEMENTATION DETAILS
We follow the decoder-only transformer architecture introduced in
LVSM [Jin et al. 2024]. We use a patch size of 8 × 8 for the input
and target patchify linear layers. The transformer contains 12 lay-
ers with QK-Norm [Henry et al. 2020] for training stability. Each
transformer block consists of a multi-head self-attention layer with
16 heads and a two-layered MLP with GeLU [Hendrycks and Gim-
pel 2016] activation. The hidden dimensions of the attention and
MLP layers are 768 and 3072, respectively. Both layers use standard
Pre-Layer Normalization [Ba 2016] and residual connections [He
et al. 2016]. The Sigmoid activation is applied after the output linear
layer. Besides transformer layers, we apply Layer Normalization
after patchify linear layers and before unpatchify linear layers as GS-
LRM [Zhang et al. 2024]. For SMPL-X [Pavlakos et al. 2019] neural
texture, we set the plane resolution as 128 and the dimension as 16.
The parameters of neural texture are initialized with the normal dis-
tribution of zero mean and 0.1 standard deviation. Similar to LVSM,
we adopt FlashAttention-v2 [Dao 2023] in the xFormers [Lefaudeux
et al. 2022] library, gradient checkpointing [Chen et al. 2016], and
Bfloat16 data type to accelerate training.
For in-the-wild experiments, we first apply PyMAF-X [Zhang

et al. 2023] to estimate the SMPL-X from the input image. Since
the estimation assumes an orthogonal camera, which differs from
the perspective camera used in our setting, we project 3D SMPL-X
joints onto the image plane using the orthogonal camera to get
RGB aligned 2D joints. Then we apply Perspective-n-Point (PnP)
to re-estimate the perspective camera pose using the 2D-3D joint
correspondence. Finally, we use RMBG-2.0 [Zheng et al. 2024] to
segment and center the foreground human, which is used as the
model input.
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B TRAINING DETAILS
Efficient Training Strategy. We apply a two-stage training strategy

that is widely adopted in recent LRM-based methods [Jin et al. 2024;
Wei et al. 2024; Zhang et al. 2024]: pre-training on low-resolution
images (256 × 256) and finetuning on high-resolution images (512 ×
512). Although such a strategy saves computation costs a lot, it is
still a huge barrier for researchers with limited resources. To further
reduce the computation consumption, we fix the number of input
views to 2 in the pre-training phase. We empirically find that the
2-view pre-trained HumanRAM can generalize to different numbers
of input views directly. Then we finetune the model to 4-view inputs
on a resolution of 512 × 512.

Other Details. We train HumanRAM on 8 A100 80GB GPUs. We
randomly sample 2 input views and 4 in-between target views for
pretraining for each subject. The batch size is set to 12 per GPU.
We apply a cosine learning rate scheduler with a peak learning
rate of 4e-4 and a warm up of 2500 iterations. The 256-size pre-
training stage contains 70k iterations and takes about 2 days. We
randomly sample 4 input and 4 target views during the finetuning
stage. Notably, if the scan has multiple poses, the target-view pose
can differ from the input-view pose. The finetuning comprises 10k
iterations with a smaller learning rate of 4e-5 and a smaller batch
size of 6 per GPU, which takes 4 additional days. We use gradient
clipping of 1.0 during training.

For animation experiments, we continuously finetune the recon-
struction model on a mixed scan and avatar dataset. For the scan
dataset, the sampling process is the same as above. For the avatar
dataset, we sample 4 input images at time 𝑡 and 4 target images ran-
domly selected from [𝑡 − 50, 𝑡 + 50]. The finetuning adopts the same
hyperparameters as above and lasts for 4k steps. When training on
ZJUMoCap [Peng et al. 2021], we apply ColorJitter augmentation
inspired by NNA [Gao et al. 2023] to prevent overfitting.

C RESULTS ON SINGLE-VIEW INPUT
We present the qualitative comparison of single-view animation
in Fig. 1 and in-the-wild results in Fig. 2. For in-the-wild experi-
ments, our method can achieve high-quality novel view synthesis
for standing humans. However, the animation occurs artifacts when
the input human wears an out-of-distribution cloth (e.g., row 3 and
4). We believe our method can address such issues by scaling up
training on large-scale real-captured multi-view human datasets
like MvHumanNet [Xiong et al. 2024].



2 • Yu, Z. et al

Fig. 1. Qualitative comparisons for single-view animation on ZJUMoCap [Peng et al. 2021]. The first two rows are from seen subjects with unseen
poses and the last three rows are from unseen subjects.
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Fig. 2. Qualitative results on in-the-wild images.We take a monocular image as input and show its reconstruction and animation results. The driving
poses are from AMASS [Mahmood et al. 2019].
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