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3D human reconstruction and animation are long-standing topics in com-
puter graphics and vision. However, existing methods typically rely on
sophisticated dense-view capture and/or time-consuming per-subject opti-
mization procedures. To address these limitations, we propose HumanRAM,
a novel feed-forward approach for generalizable human reconstruction and
animation frommonocular or sparse human images. Our approach integrates
human reconstruction and animation into a unified framework by intro-
ducing explicit pose conditions, parameterized by a shared SMPL-X neural
texture, into transformer-based large reconstruction models (LRM). Given
monocular or sparse input images with associated camera parameters and
SMPL-X poses, our model employs scalable transformers and a DPT-based
decoder to synthesize realistic human renderings under novel viewpoints
and novel poses. By leveraging the explicit pose conditions, our model si-
multaneously enables high-quality human reconstruction and high-fidelity
pose-controlled animation. Experiments show that HumanRAM significantly
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surpasses previous methods in terms of reconstruction accuracy, animation
fidelity, and generalization performance on real-world datasets. Video results
are available at https://zju3dv.github.io/humanram/.

CCS Concepts: • Computing methodologies → Rendering; Animation.

Additional Key Words and Phrases: Human reconstruction, human anima-
tion, neural rendering
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1 INTRODUCTION
Reconstruction and animation are two core topics in human-centric
3D vision and graphics. Although high-end dense-view capture
systems and modeling technologies [Collet et al. 2015; Guo et al.
2019; Işık et al. 2023; Li et al. 2024b] achieve high-quality 3D human
reconstruction and animation, the complicated hardware and time-
consuming per-subject optimization limit their broader applications.

This bottleneck leads to a trend of sparse/single-view reconstruc-
tion, which employs generalizable feed-forward networks to predict
3D humans directly from limited inputs. Pioneering works like
PIFu [Saito et al. 2019, 2020] proposed to reconstruct human geom-
etry via occupancy fields, but paid less attention to photo-realistic
rendering demanded by real applications. Recently, with significant
advances in differentiable rendering [Kerbl et al. 2023; Laine et al.
2020; Mildenhall et al. 2020] and neural rendering [Tewari et al.
2020; Thies et al. 2019], researchers start using scalable transform-
ers [Vaswani 2017] to predict 3D representations or novel-view
renderings from input images. These approaches originate from
the Large Reconstruction Model (LRM) [Hong et al. 2023]. After
being exposed to a large amount of 3D data (e.g., Objaverse [Deitke
et al. 2023]), LRM and its follow-ups [Jin et al. 2024; Wei et al. 2024;
Zhang et al. 2024a] learn to predict 3D models or images in a single
forward pass. While LRMs achieve feed-forward 3D reconstruction,
they struggle with fine-grained details in human geometry under
complex poses and cloth deformations. Moreover, existing frame-
works focus on static reconstruction, ignoring dynamic animations
that are essential for interactive applications.

To address these challenges, we propose Human Reconstruction
and Animation Model (HumanRAM), a novel framework that in-
tegrates human reconstruction and animation into a unified feed-
forward model. We leverage Large View Synthesis Model (LVSM)
[Jin et al. 2024] as the foundational architecture, which implicitly
learns 3D structures and directly regresses novel-view renderings.
Previous explicit 3D representations usually require precise geom-
etry for high-quality output. However, geometric constraints are
insufficient under sparse observations. By harnessing the implicit na-
ture of LVSM, we overcome this limitation and improve the model’s
performance and generalization capacity.

Original LVSM maps input images & cameras, as well as the tar-
get camera, into patch tokens and regresses the target-view image
using transformers. To endow LVSM with the animation ability
and improve the reconstruction quality for humans, we introduce

SMPL-X [Pavlakos et al. 2019], a parametric human mesh model
that provides strong pose and geometry priors as additional input
tokens. Given calibrated multi-view human images, SMPL-X can
be estimated using off-the-shelf tools [Sun et al. 2024b; Zhang et al.
2021]. To tokenize the SMPL-X prior, we introduce rasterization
of a shared neural texture map bound to the SMPL-X mesh across
input and target views. This process yields pose images that spa-
tially align with the RGB and camera tokens used in LVSM. These
pose images serve as a strong geometrical and semantical guide for
the transformer’s attention mechanism, thereby enabling a more
realistic novel-view synthesis and pose-controlled animation.

The key insights of our method are: 1) The rasterized pose images
establish shared embedding space between input and target views,
providing explicit correspondences for the self-attention layers of
transformers to reassemble the target view, thus producing higher-
fidelity reconstruction. 2) The pose images enable LVSM to match
appearance across diverse poses through the shared neural texture
map, thereby achieving realistic animation. Moreover, we propose a
DPT-based [Ranftl et al. 2021] decoder to facilitate the information
exchange among neighboring patches and intermediate transformer
features, effectively suppressing checkerboard artifacts prevalent in
linear decoders.
Overall, the synergy of design choices enables high-quality hu-

man reconstruction and photo-realistic human animation from
sparse/single image(s), as shown in Fig. 1 and Fig. 4.

2 RELATED WORK

2.1 Generalizable Human Reconstruction
Human reconstruction has been widely explored over the past few
decades. Traditional methods reconstruct human geometry and tex-
ture from dense-view images [Bradley et al. 2008; Collet et al. 2015;
Guo et al. 2019; Liu et al. 2009; Starck and Hilton 2007; Vlasic et al.
2009; Wu et al. 2011]. With advancements in differentiable 3D repre-
sentations like implicit functions [Chabra et al. 2020; Mescheder et al.
2019; Park et al. 2019; Peng et al. 2020], neural radiance fields (NeRF)
[Mildenhall et al. 2020], and 3D Gaussian splatting (3DGS) [Kerbl
et al. 2023], researchers tend to learn data-driven feed-forward mod-
els. Methods like BodyNet [Varol et al. 2018], DeepHuman [Zheng
et al. 2019], and Tang et al. [2023] regress volumetric outputs from
image(s) but face resolution limits from GPU memory constraints.
PIFu [Saito et al. 2019] and its successors [Cao et al. 2023; Saito
et al. 2020; Xiu et al. 2023, 2022; Yang et al. 2024c; Yu et al. 2021;
Zhang et al. 2024c,d; Zheng et al. 2021a,b] address this by learning
pixel-aligned implicit functions for human geometry recovery.

In recent years, many works have developed generalizable models
based on NeRF or 3DGS for human novel view synthesis. Similar
to PIFu, NeRF-based approaches [Chen et al. 2024a, 2023; Hu et al.
2023b; Kwon et al. 2021; Lin et al. 2022; Mihajlovic et al. 2022; Raj
et al. 2021; Shao et al. 2022; Sun et al. 2024a; Zhou et al. 2024a]
extract pixel-aligned features and learn image-conditioned radiance
fields. In contrast, 3DGS-based methods explicitly parameterize 3D
gaussians in pixel space [Dong et al. 2024; Hu et al. 2024b; Tu et al.
2024; Zheng et al. 2024; Zhou et al. 2024b], UV space [Kwon et al.
2024] or tokens [Prospero et al. 2024]. More recently, 3D AIGC has
made remarkable progress [Liu et al. 2024b, 2023; Poole et al. 2023;
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Voleti et al. 2024], leading researchers to model the reconstruction
as an image-conditioned generation task [AlBahar et al. 2023; Cao
et al. 2024; Chen et al. 2024b; Gao et al. 2024; He et al. 2024; Huang
et al. 2024; I Ho et al. 2024; Kolotouros et al. 2024; Li et al. 2024a;
Liu et al. 2024c; Sengupta et al. 2024; Weng et al. 2023; Xiu et al.
2024; Xu et al. 2023b; Yang et al. 2024a]. Although diffusion models
enhance texture hallucination for occluded regions, their iterative
refinement process incurs higher computational costs than feed-
forward models.

2.2 Large Reconstruction Model
Large Reconstruction Model (LRM) was first proposed by Hong et al.
[2023], which learns a generalizable NeRF [Mildenhall et al. 2020]
from a single image. Subsequent works [Tang et al. 2025; Wang et al.
2023b; Wei et al. 2024; Weng et al. 2023; Xie et al. 2024; Xu et al.
2024b, 2023a; Zhang et al. 2024a] explore LRM in various down-
stream tasks. For instance, PF-LRM [Wang et al. 2023b] learns from
unposed images. LRM-Zero [Xie et al. 2024] and MegaSynth [Jiang
et al. 2024] train LRM on synthetic data and successfully generalize
to real data. DMV3D [Xu et al. 2023a] applies LRM as a diffusion
denoiser to improve generation view consistency. Some researchers
extend the representation of LRM from NeRF to mesh [Wei et al.
2024], 3DGS [Liang et al. 2024b; Shen et al. 2024; Tang et al. 2025;
Xu et al. 2024b; Yi et al. 2024; Zhang et al. 2024a; Ziwen et al. 2024]
and 2DGS [Chen et al. 2024c]. More recently, LVSM [Jin et al. 2024]
synthesizes novel views using pure transformers. Despite these
advances, existing LRM variants mainly focus on object/scene re-
construction, ignoring human-centric applications. In contrast, our
method specializes in human reconstruction and animation.

2.3 Human Animation
Human animation aims to generate novel-pose images given one or
more input images. Previous works are categorized into 2D and 3D
animation. 2D animation formulates the task as signal-driven image
generation [Chan et al. 2019; Liu et al. 2019; Ren et al. 2020; Siarohin
et al. 2019a,b, 2021; Yu et al. 2023b; Zhang et al. 2022; Zhao and
Zhang 2022]. Recently, diffusion-based methods [Hu et al. 2023a;
Ma et al. 2023; Men et al. 2024; Shao et al. 2024a; Wang et al. 2023a;
Xu et al. 2024c; Zhang et al. 2024b; Zhu et al. 2024] have gained huge
attention for their powerful generation capabilities, but they suffer
from time-consuming generation due to the denoising process.

3Dmethods typically optimize person-specific avatars from single
or multi-view videos using various 3D representations (e.g., point
clouds [Su et al. 2023], mesh [Bagautdinov et al. 2021; Chen et al.
2024d], implicit field [Jiang et al. 2022b; Li et al. 2023; Peng et al. 2024;
Wang et al. 2022; Xu et al. 2024a; Zhang et al. 2023], NeRF [Jiang
et al. 2022a,c; Li et al. 2022; Liu et al. 2021, 2024a; Peng et al. 2021a;
Xiao et al. 2024; Xu et al. 2022; Yu et al. 2023a] and 3DGS [Hu et al.
2024a; Kocabas et al. 2024; Lei et al. 2024; Li et al. 2024b; Lin et al.
2024; Moon et al. 2024; Shao et al. 2024b; Wen et al. 2024; Zielonka
et al. 2025]). The avatars are then animated using linear blend skin-
ning (LBS). However, the optimization process is time-intensive
and can fail with very sparse inputs. To generalize, researchers use
learned priors [Chatziagapi et al. 2024; Hsuan-I Ho and Hilliges
2023; Mu et al. 2023] or feed-forward models [Gao et al. 2023, 2022;

He et al. 2021; Huang et al. 2020; Kwon et al. 2023; Shin et al. 2025].
Our method bridges human prior and Large Reconstruction Model,
leading to more realistic animation.

3 METHOD

3.1 Preliminary: LVSM
Large View Synthesis Model (LVSM) [Jin et al. 2024] is a recent
method for neural rendering without using any explicit 3D rep-
resentations. This method inputs multi-view images and camera
parameters and outputs target-view renderings through encoder-
decoder or decoder-only transformers. Specifically, given 𝑁 images
with their corresponding camera poses parameterized by Plücker
ray embeddings [Plücker 1865], denoted as {I𝑖 ∈ R𝐻×𝑊 ×3, P𝑖 ∈
R𝐻×𝑊 ×6 |𝑖 = 1, ..., 𝑁 }, LVSM first maps them into patch tokens
x𝑖 𝑗 ∈ R𝑑 with a linear layer (𝑑 is the token dimension):

x𝑖 𝑗 = Linearinp ( [I𝑖 𝑗 , P𝑖 𝑗 ]), (1)

where I𝑖 𝑗 ∈ R3𝑝2
and P𝑖 𝑗 ∈ R6𝑝2

mean the 𝑗-th 𝑝 × 𝑝 patch of I𝑖
and P𝑖 , and [·, ·] means concatenation. The target-view pose is also
represented as Plücker ray embedding P𝑡 ∈ R𝐻×𝑊 ×6 and mapped
to patch tokens q𝑗 ∈ R𝑑 with another linear layer:

q𝑗 = Lineartar (P𝑡𝑗 ). (2)

Given input and target tokens, decoder-only LVSM synthesizes
target-view tokens y𝑗 ∈ R𝑑 through transformers T :

x′𝑖 , ..., x
′
𝑙𝑥
, y1, ..., y𝑙𝑞 = T (x𝑖 , ..., x𝑙𝑥 , q1, ..., q𝑙𝑞 ), (3)

where 𝑙𝑥 and 𝑙𝑞 mean the number of input and target tokens. Finally,
LVSM regresses the RGB values of each target patch from output
tokens with a linear layer followed by a Sigmoid function:

Î𝑡𝑗 = Sigmoid(Linearout (y𝑗 )) ∈ R3𝑝2
. (4)

The predicted RGB values are unpatchfied to 2D space to form the
final target image. In this paper, we incorporate dedicated designs
into LVSM for human reconstruction and animation.

3.2 Overview
Given sparse-view images of a character, we aim to synthesize the
character under novel views and poses, i.e., to perform feed-forward
human reconstruction and animation. As a state-of-the-art feed-
forward large reconstruction model (LRM), LVSM [Jin et al. 2024]
is introduced as a foundational architecture of our method. To en-
dow LRM with the animation ability, we introduce pose tokens
parameterized by a neural texture [Thies et al. 2019] bound with
SMPL-X [Pavlakos et al. 2019] into LVSM. Specifically, as illustrated
in Fig. 2, we render the learnable SMPL-X neural texture to the
sparse input views, resulting in 𝑁 feature maps, which we refer to
as pose images. The input RGB images, their corresponding Plücker
embeddings, and the pose images are concatenated and then patch-
fied as input tokens. Given the target view and the target human
poses to be synthesized, we similarly concatenate and patchify them
as target tokens. The input and target tokens are fed into a trans-
former model, and the output tokens are regressed to produce the
synthesized human image under the target view and pose.
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Fig. 2. Pipeline of HumanRAM. HumanRAM adopts transformers for human reconstruction and animation from sparse view images in a feed-forward
manner. We first patchify and project spare-view RGB images and their corresponding Plücker rays and pose images into input tokens through a linear layer.
The pose images are acquired by rasterizing the SMPL-X neural texture onto the input views. Similarly, given the target novel view under the same or another
novel pose, the target tokens are created from the target Plücker rays and pose images through another linear layer. Then both input tokens and target tokens
are fed into transformer blocks. Finally, a DPT-based decoder regresses the intermediate target tokens to a high-fidelity human image under the target view
and target pose. Overall, HumanRAM realizes feed-forward reconstruction and animation by controlling the target views and target poses at the input end.

3.3 Pose-conditioned Reconstruction and Animation
Since LVSM discards explicit 3D representation, we cannot directly
use the SMPL-X [Pavlakos et al. 2019] model as a geometry prior or
proxy for pose-conditioned reconstruction and animation, as done
in previous works [Huang et al. 2020; Kwon et al. 2024; Taubner
et al. 2024; Xiu et al. 2023; Zheng et al. 2021b]. Inspired by neural
texture [Deng et al. 2024; Thies et al. 2019; Yoon et al. 2022], we
render the SMPL-X mesh with a neural texture onto multi-view 2D
image planes, generating multi-view pose conditions. These pose
conditions serve not only as a strong geometry prior for the novel
view synthesis but also as an enabler for the animation ability.

SMPL-X Neural Texture. We adopt tri-planes [Chan et al. 2021] to
represent the neural texture for its effectiveness and compactness.
As illustrated in Fig. 3, the neural texture is defined as learnable
feature tri-planes within a canonical space, determined by SMPL-
X with canonical pose and mean shape. We denote the canonical
SMPL-X vertices as Vcano ∈ R𝑁𝑉 ×3 and feature tri-planes as T ∈
R3×𝐻 ′×𝑊 ′×𝐶 , where 𝐻 ′ and𝑊 ′ are the resolution of each plane,
and 𝐶 is the feature dimension. For each position v ∈ R3 on the
canonical SMPL-X surface, its corresponding neural texture is the
concatenation of sampled features on each plane:

F(v;T) = [BLerp(v𝑥𝑦 ;T𝑥𝑦),

BLerp(v𝑥𝑧 ;T𝑥𝑧), BLerp(v𝑦𝑧 ;T𝑦𝑧)] ∈ R3𝐶 ,
(5)

where BLerp(·) is the bilinear interpolation function on the fea-
ture plane given 2D query coordinates. The SMPL-X neural tex-
ture is shared across all the identities, providing guidance for pose-
conditioned reconstruction and animation.

Fig. 3. Illustration of the process of neural texture rasterization.We
first render position maps with canonical SMPL-X as vertex colors, and then
the position maps are used to sample triplane-based neural texture.

Input Tokens. Given calibrated multi-view input images of a char-
acter, we obtain the registered SMPL-X mesh using multi-view mo-
tion capture like [Zhang et al. 2021]. The registered SMPL-X serves
as a geometry proxy. We then bind its vertex attributes with the
canonical positions Vcano and rasterize it to the input views, produc-
ing 𝑁 position maps {V𝑖 ∈ R𝐻×𝑊 ×3}, where each pixel corresponds
to a canonical position. The rendered position maps are then used
to sample the neural texture using Eq. 5. Consequently, we raster-
ize the SMPL-X neural texture onto the input views, obtaining 𝑁

pose images {F𝑖 ∈ R𝐻×𝑊 ×3𝐶 }. Then, similar to Eq. 1, we concate-
nate RGB images, Plücker embeddings, and pose images along the
channel dimension, and then patchify them as “input tokens”:

x𝑖 𝑗 = Linearinp ( [I𝑖 𝑗 , P𝑖 𝑗 , F𝑖 𝑗 ]). (6)
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Target Tokens for Reconstruction. Given a new target viewpoint,
we rasterize the neural texture onto it using the registered SMPL-X
model to obtain a novel view pose image F𝑡 . Similar to Eq. 2, we
concatenate the Plücker embeddings and pose image of the target
view, and then patchify them as “target tokens” for reconstruction:

qrecon𝑗 = Lineartar ( [P𝑡𝑗 , F
𝑡
𝑗 ]). (7)

Target Tokens for Animation. Since the rasterized neural texture
provides rich human pose information, it is natural to explore our
model’s potential animation ability for both novel view and pose
synthesis. Specifically, given a novel target pose 𝜃 , we first transform
it into a posed SMPL-X model. We then rasterize the neural texture
onto a novel view using the posed SMPL-X, obtaining the pose image
F̂𝑡 representing both the novel view and the novel pose. Following
Eq. 7, we acquire “target tokens” {qani

𝑗
} for animation.

Output Tokens. The input and target tokens are subsequently
fed to a decoder-only transformer T , composed of a series of self-
attention layers, producing a sequence of “output tokens”. These
output tokens and intermediate features are decoded as an image
under the target view and target pose using a DPT-based decoder
[Ranftl et al. 2021] (Sec. 3.4).

Discussion on Pose Conditions. We discuss the impact of the neural
texture-based pose images on both reconstruction and animation.

• From the perspective of novel view synthesis, i.e., reconstruc-
tion, LVSM [Jin et al. 2024] learns cross-view matching from
RGB and camera pose information to reassemble a novel view
image using the attentionmechanism. Ourmethod introduces
additional SMPL-X neural texture into the matching process,
providing more explicit correspondences for higher-quality
view synthesis, as demonstrated in Fig. 5, compared to vanilla
LVSM.

• On the other end of the spectrum, the pose condition en-
ables texture matching across different poses with a shared
neural texture, achieving novel pose synthesis. To the best
of our knowledge, HumanRAM is the first to endow Large
Reconstruction Model with the animation ability.

3.4 DPT-based Decoder
Original LVSM [Jin et al. 2024] uses a linear layer to decode tokens
into RGB values directly. We empirically find that such a simple
decoder yields patch-like artifacts for humans, especially in regions
suffering severe self-occlusions or containing thin structures, as
shown in Fig. 8. We hypothesize that such artifacts are attributed to
the lack of information exchange between neighboring patch tokens
when decoding. Inspired by the dense prediction transformers (DPT)
used in various vision transformer models [Oquab et al. 2023; Ranftl
et al. 2021; Wang et al. 2024; Yang et al. 2024b], we replace the
linear layer with stacks of residual CNN layers, similar to DPT
heads, enhancing the local information fusion. Therefore, the final
synthesized image Î𝑡 is formed using a DPT-based decoder:

Î𝑡 = Sigmoid(DPT({y𝑖 |𝑖 = 3, 6, 9, 12}), (8)

where y𝑖 denotes the intermediate tokens of the 𝑖-th layer.

3.5 Loss Functions
Given the predicted target-view images {Î𝑖 ∈ R𝐻×𝑊 ×3 |𝑖 = 1, ..., 𝑀},
we optimize HumanRAM using the following objective:

L =
1
𝑀

Σ𝑀𝑖=1 (LMSE (Î𝑖 , I𝑖 ) + 𝜆 · LPerc (Î𝑖 , I𝑖 )), (9)

where L𝑀𝑆𝐸 denotes the mean squared error and LPerc denotes the
perceptual loss [Chen and Koltun 2017], computing 𝐿1 difference
between the extracted features from the VGG-19 network Φ [Si-
monyan and Zisserman 2014]. 𝜆 is the loss weight of LPerc and set
to 1.0 in our experiments.

4 EXPERIMENTS
As shown in Fig. 1 and Fig. 4, our method can create realistic human
reconstruction and animation from single and sparse images since
our transformer-based architecture is flexible to the image token
number. Video results can be found in the Supp. video.

4.1 Settings
The implementation and training details are presented in the Supp.
document.

Datasets. We conduct experiments on four public datasets: THu-
man2.1 [Yu et al. 2021], Human4DiT [Shao et al. 2024a], ZJUMo-
Cap [Peng et al. 2021b], and ActorsHQ [Işık et al. 2023] for training
and evaluation. THuman2.1 and Human4DiT comprise thousands of
high-quality 3D human scans, texture maps, and SMPL-X [Pavlakos
et al. 2019] fittings. We use the training set of 2300 scans from THu-
man2.1. The training scans are categorized according to human iden-
tities, enabling the model to learn animation across different poses
of the same identity. Each training scan is normalized into a [−1, 1]3
bounding box and rendered to 60-view images at a resolution of 512
via Cycles [Community 2018]. The cameras are randomly sampled
with an altitude of [−45◦, 45◦] and a radius of [2.0, 3.0]. ZJUMoCap
and ActorsHQ are human avatar datasets that provide multi-view
human videos and SMPL(-X)s. We convert the SMPL [Loper et al.
2015] parameters into SMPL-X for ZJUMoCap and use the SMPL-X
provided by Li et al. [2024b] for ActorsHQ. All images are resized
to 512×512 for aligning the input resolution of networks.

Baselines. We compare with generalizable human reconstruction
methods GPS-Gaussian [Zheng et al. 2024] and GHG [Kwon et al.
2024]. We also compare against LRM-like methods LaRa [Chen et al.
2024c] and LVSM [Jin et al. 2024]. For animation, we compare with
generalizable human avatar methods NNA [Gao et al. 2023] and
SHERF [Hu et al. 2023b], as well as a personalized avatar method
3DGS-Avatar [Qian et al. 2024].

Metrics. We utilize the Peak Signal-to-Noise Ratio (PSNR), Struc-
ture Similarity IndexMeasure (SSIM) [Wang et al. 2004], and Learned
Perceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018] as
metrics to assess the results quantitatively and qualitatively. PSNR
and SSIM are evaluated on mask-cropped images, while LPIPS is
computed on full-size images.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



6 • Yu, Z. et al

Fig. 4. Qualitative results on ActorsHQ [Işık et al. 2023] and THuman2.1 [Yu et al. 2021]. The top two rows show the reconstruction and animation
results from multi-view inputs, while the bottom two rows show the results from single-view input. The driving poses for animation are from ActorsHQ [Işık
et al. 2023] and AMASS [Mahmood et al. 2019].

Table 1. Quantitative comparison of reconstruction on THuman2.1 [Yu et al. 2021] and Human4DiT [Shao et al. 2024a]. We report PSNR, SSIM, and
LPIPS to evaluate the reconstruction quality. All methods are trained or finetuned on THuman2.1 for fair comparison.

Metrics THuman2.1 Human4DiT
Ours LVSM GPS-Gaussian GHG LaRa Ours LVSM GPS-Gaussian GHG LaRa

PSNR↑ 30.34 28.24 22.11 21.88 23.71 26.35 25.56 20.87 19.47 22.91
SSIM↑ 0.9535 0.9396 0.9007 0.8780 0.8913 0.9373 0.9247 0.8953 0.8539 0.8900
LPIPS↓ 0.0184 0.0226 0.0421 0.0517 0.0679 0.0211 0.0248 0.0419 0.0586 0.0663

4.2 Comparison on Reconstruction
We compare HumanRAMwith baselines on synthetic and real-world
datasets. For synthetic dataset, we randomly select 200 scans from
Thuman2.1 [Yu et al. 2021] and Human4DiT [Shao et al. 2024a]
as the test set. We input 4 uniform views for all methods except
GPS-Gaussian [Zheng et al. 2024], which requires 5 equal-height
images for reasonable stereo rectification. The qualitative results
are shown in Fig. 5. LaRa [Chen et al. 2024c] demonstrates blurry

results due to its low-resolution volume representation, limiting its
ability to model complicated geometries and textures. GPS-Gaussian
is inclined to generate incomplete results because its stereo match-
ing may fail when input views are sparse. GHG [Kwon et al. 2024]
applies multi-scaffold SMPL-X [Pavlakos et al. 2019] mesh as the ge-
ometry proxy, which cannot handle loose cloth and tends to produce
artifacts if severe self-occlusion occurs. LVSM [Jin et al. 2024] fails
to synthesize fine-grained structures like hands and faces due to the
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Fig. 5. Qualitative comparisons for reconstruction on THuman2.1 [Yu et al. 2021] and Human4DiT [Shao et al. 2024a]. We input 4 multi-view
images of unseen subjects, and our method achieves a more faithful rendering compared to other reconstruction methods. The first four rows are from
THuman2.1 and the last two rows are from Human4DiT. The red boxes indicate the improvements of our method over LVSM [Jin et al. 2024].
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lack of human priors. Tab. 1 reports the numerical comparison on
reconstruction. Overall, our method significantly outperforms previ-
ous methods both qualitatively and quantitatively. To demonstrate
the generalization ability of HumanRAM, we conduct experiments
on ActorsHQ [Işık et al. 2023] and in-the-wild images. For ActorsHQ,
we select 5 uniform cameras as input and sample 100 frames per
subject for evaluation. The results are shown in Tab. 2 and Fig. 6.
All previous methods fail to generate reasonable results on real-
captured data. In contrast, our proposed SMPL-X neural texture
provides transformer blocks with coarse correspondences for cross-
view matching, leading to better generalization. For in-the-wild
images, we present the qualitative results of HumanRAM in the
Supp. document.

4.3 Comparison on Animation
We compare HumanRAM with generalizable approaches includ-
ing NNA [Gao et al. 2023] and SHERF [Hu et al. 2023b], as well as
a personalized approach 3DGS-Avatar [Qian et al. 2024], on ZJU-
MoCap [Peng et al. 2021b]. We train HumanRAM and SHERF on
THuman2.1 [Yu et al. 2021] and ZJUMoCap [Peng et al. 2021b]. We
use official weights for NNA since its training code has not been
released. For 3DGS-Avatar, we train it on input views and animate it
with novel poses. The evaluation is conducted on 100 randomly se-
lected frames for each test subject. The multi-view animation results
are shown in Tab. 3 and Fig. 7. The single-view results are shown
in Tab. 4 and the Supp. document. 3DGS-Avatar requires a lengthy
video to learn per-subject pose-dependent deformation. However,
when the data size is limited (single frame in our experiments), it is
prone to overfitting the input images, leading to severe artifacts in
novel views and poses. NNA and SHERF learn a generalizable canon-
ical avatar from the input image(s) and deform it to a novel pose
using LBS wrapping. Compared to 3DGS-Avatar, these generalizable
methods achieve better animation results owing to the data-driven
prior learning. However, their canonical representation suffers from
blurred textures and overfitting. Besides, LBS wrapping tends to
produce unnatural deformation in the underarm region. Conversely,
HumanRAM returns more realistic results in terms of quality and
quantity thanks to the human structure prior learned through our
dedicated designs. We further present in-the-wild animation results
in the Supp. document to demonstrate the generalization capacity
of HumanRAM.

Table 2. Quantitative comparison of reconstruction onActorsHQ [Işık
et al. 2023]. All methods are evaluated directly on ActorsHQ without train-
ing or finetuning.

Metrics Ours LVSM GHG LaRa

PSNR↑ 25.47 20.25 18.01 19.98
SSIM↑ 0.9088 0.8023 0.7922 0.8177
LPIPS↓ 0.0350 0.0724 0.0880 0.0945

4.4 Ablation Study
Core components. We conduct ablation studies to evaluate the im-

pact of our core components, i.e., Pose Image and DPT-based Decoder.

Fig. 6. Qualitative comparisons for reconstruction on ActorsHQ [Işık
et al. 2023]. We input 5 multi-view images, and our method achieves a
more faithful rendering compared to other state-of-the-art generalizable
reconstruction methods.

The experiments are evaluated on the THuman2.1 [Yu et al. 2021]
dataset as shown in Tab. 5 and Fig. 8. “Position” means replacing
the pose image with 3-dim position maps, and this ablation shows
that such replacement decreases the performance, indicating the
superiority of learnable neural texture. “Linear” means replacing the
DPT-based decoder with a linear layer used in vanilla LVSM. Exper-
iments show that the skip-connection and convolution operations
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Fig. 7. Qualitative comparisons for multi-view animation on ZJUMo-
Cap [Peng et al. 2021b]. We input 4 multi-view images of the unseen
subject, and our method achieves a more photo-realistic rendering com-
pared to other methods.

in DPT are helpful in integrating information from multiple scales
and neighboring patches, thus eliminating the patch-like artifacts
and improving the overall visual quality.

Number of Views. We evaluate the impact of view numbers on
THuman2.1 [Yu et al. 2021]. The model is directly evaluated on
different numbers of input views without finetuning. Tab. 5 shows

Table 3. Quantitative comparison of multi-view animation on ZJU-
MoCap [Peng et al. 2021b]. Metrics are computed on unseen subjects
using the same crop manner as NNA [Gao et al. 2023].

Method PSNR↑ SSIM↑ LPIPS↓
NNA 21.29 0.9369 0.0530
3DGS-Avatar 18.50 0.8367 0.0499
Ours 23.40 0.9529 0.0252

the rendering quality increases with more input views, which aligns
with the performance pattern reported in LVSM [Jin et al. 2024].

Table 4. Quantitative comparison of single-view animation on ZJU-
MoCap [Peng et al. 2021b]. Metrics are computed on unseen poses and
unseen subjects following SHERF [Hu et al. 2023b].

Method PSNR↑ SSIM↑ LPIPS↓

Unseen
Poses

SHERF 18.56 0.8760 0.0501
3DGS-Avatar 17.28 0.8243 0.0778
Ours 21.07 0.9152 0.0234

Unseen
Subjects

SHERF 17.80 0.8768 0.0536
3DGS-Avatar 17.97 0.8481 0.0687
Ours 20.63 0.9184 0.0250

Table 5. Ablation study on THuman2.1 [Yu et al. 2021]. We report PSNR,
SSIM, and LPIPS to evaluate the contribution of proposed components and
the impact of different input views.

Method PSNR↑ SSIM↑ LPIPS↓
Position + DPT 29.32 0.9443 0.0197
Pose Image + Linear 30.07 0.9526 0.0186
Ours (Pose Image + DPT, 4 views) 30.34 0.9535 0.0184

Ours (1 view) 21.69 0.8834 0.0479
Ours (2 views) 25.01 0.9097 0.0344
Ours (8 views) 32.34 0.9663 0.0150

5 DISCUSSION
Conclusion. We propose HumanRAM, a novel generalizable feed-

forward model for human reconstruction and animation. We inte-
grate human reconstruction and animation into a unified framework
by introducing pose conditions into large reconstruction models.
We introduce a shared SMPL-X neural texture and rasterize it onto
input and target views to associate correspondences across differ-
ent views and poses, enabling higher-quality reconstruction and
realistic animation. Overall, our method outperforms other state-
of-the-art methods in terms of novel view and pose synthesis, both
qualitatively and quantitatively.
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Fig. 8. Qualitative comparisons for ablations on proposed core com-
ponents. Compared with positions, pose image helps capture detailed
structures (indicated by red and blue boxes). Furthermore, the DPT-based
decoder helps reduce the patch-like artifacts in regions with severe self-
occlusion (red box), thin structures (blue box), and face (green box).

Limitation. Our method cannot handle high-resolution image
inputs since the token number increases quadratically with the
image resolution. One possible solution is to transfer the inputs
and outputs from the high-resolution RGB space to the compressed
low-resolution latent space, like WonderLand [Liang et al. 2024a]
and HumanSplat [Pan et al. 2024].
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