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Figure 1. Overview of the transformer for part VQ-VAE infer-
ence. The code is predicted in an auto-regressive manner using the
GPT-like transformer.

1. Social Impact
Our proposed framework can generate realistic human

motions, which might be misused for generating fake videos
with the techniques in neural rendering.

2. Implementation Details
2.1. Part VQ-VAE

We train the part VQ-VAE for 50 epochs. The human
skeleton is split into 5 parts as body, right hand, left hand,
right leg, and left leg like [12], each of which contains 6,
4, 4, 4, and 4 joints. The sizes of all codebooks are set as
8 and the dimension of the code is 4. The encoders of all
splits are 3 layers MLPs with 256 channels. The decoder is
a 4 layers MLP with 256 channels. The β for commitment
loss [22, 16] is 0.1.

We use a GPT-like [2] transformer with 4 transformer
decoder layers [23] to build the auto-regressive transformer
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Figure 2. Overview of transformer DDPM for milestone pose
generation. Unlike the model for milestone point generation, the
inputs are summed with frame-wise conditions.

like [4]. The model is illustrated in Fig. 1 and trained for 1
epoch. We set the number of heads in multi-head attention
to 4, the dropout rate to 0.1, and the dimension of the in-
termediate feedforward network to 1024. For inference, the
codes are predicted with a pre-defined order: body, left leg,
right leg, right hand, and left hand. The full training of part
VQ-VAE costs 5 minutes on a TITAN Xp GPU.

2.2. Transformer DDPM

The transformer DDPM models for milestone point gen-
eration, milestone pose generation (Fig. 2), trajectory com-
pletion (Fig. 3), and motion infilling (Fig. 4) are trained
for 250, 100, 250, and 10 epochs. The training times of
these models are 12, 12, 10, and 1 hours on a TITAN Xp
GPU. During training, the number of sampling steps for
all DDPM models is set to 1000 [10]. We set the forward
process variances to constants increasing with the cosine
schedule [14] from β1 = 0.0001 to βT = 0.02. For infer-
ence, we accelerate DDPM models with DDIM [18] and set
T = 250. All models are set with 4 transformer decoder
layers [23]. We set the number of heads in multi-head at-
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Figure 3. Overview of transformer DDPM used for trajectory
completion. Different from the model used for milestone genera-
tion, we remove the length head.
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Figure 4. Overview of transformer DDPM for motion infilling.
The inputs are summed with frame-wise conditions.

tention to 4, the dropout rate to 0.1, and the dimension of
the intermediate feedforward network to 1024.

2.3. Representation

Pose representation. In our paper, the pose representa-
tion follows previous works [19, 6, 30]. We use θi to rep-
resent the local pose at the i-th frame, which is composed
of {jpi , jri , jvi }, where jpi ∈ R3k, jri ∈ R6k, jvi ∈ R3k are
the positions, rotations, and velocities of k joints related to
the root. ri = {rpi , rdi } are the root position and forward
direction.

Milestone point representation. We employ a bi-
directional representation [19] for milestone points:

mi = {rbi , ci,wi}. (1)

The representation of milestone points is the root of these
points, which is similar to previous works [19, 6, 30]. It
is projected on the ground so the position and forward di-
rections are 2 dimensions instead of 3. The rbi ∈ R8 is
bi-directional [19, 6, 30] and contains the root position and
forward directions relative to the starting point and the goal
point (2∗(2+2) = 8). ci ∈ R5 are contact labels indicating
the contact between the environment and the body includ-
ing the pelvis, feet, and hands, also same as previous works
[19, 6, 30].

To capture the state of the milestone, we also predict a
high-dimensional feature at milestone i which encodes the
information of a 2-second (61 frames) window like previous
works [19, 6, 30]:

wi = {wp
i ,w

d
i ,w

a
i }. (2)

Specifically, wp
i ∈ R2T and wd

i ∈ R2T are the root posi-
tions and forward directions in the nearby window relative
to the root of milestone i. T = 13 denotes the number of
frames selected to form this feature. wa

i ∈ Rna×T denotes
action labels. The number of actions is denoted by na. Fol-
lowing [19, 6, 30], the action variable wa

i is in the one-hot
label shape but the value is continuous between [0, 1], as
there are transitions between different actions.

2.4. Root representation for trajectory completion.

The root representation for trajectory completion is sim-
ilar to the one used in milestone point generation. The only
difference is that the bi-directional scheme here indicates
the root positions and directions relative to the two consec-
utive milestone points.

2.5. Implementations of the results in a cluttered
scene.

Due to the lack of cluttered objects in the training data,
we find directly applying our method may generate paths
with collision. Similar to other diffusion model methods
[28, 21], DDPM has the ability to edit [28] and interpo-
late [21]. Thus we run our method with the guide of A∗.
Because the diffusion process is done in an interactive man-
ner, we can inject the path generated by A∗ into the iterative
sampling. Specifically, we obtain the interpolating predic-
tions m̂0 in one step of the diffusion process with smooth-
ing factor s as

m̂0 = s ∗ fm (mt, t, C) + (1− s) ·ma, (3)

where ma is the path generated by A∗. Then, we noise it
back to mt−1. This is repeated from t = T until the final



s FD↓ APDM ↑ APDP ↑ APDT ↑ Percentage ↓ Sliding↓
0.25 23.80 4.00 4.38 75.45 3.6 0.55
0.50 23.06 4.14 4.46 76.47 3.8 0.53
0.75 22.64 4.19 4.62 80.18 3.9 0.56
1.00 22.34 4.06 4.52 91.38 7.5 0.50

Table 1. The effect of the interpolation factor. The percentage
of frames with penetration is calculated in a cluttered scene and
other metrics are calculated in the test setting described in Sec. 3.1.
Ratio: The percentage of frames with penetration.

m0 is achieved. Consequently, we obtain the final results
which combine the generation and the planned path by A∗.

The effect of the magnitude of s is shown in Tab. 1. We
calculate the percentage of penetration frames in the clut-
tered scene and calculate other metrics in the setting de-
scribed in Sec. 3.1. Empirically, we find that different mag-
nitudes of s have similar results. Because our trajectory
completion module learns to generate trajectories that avoid
obstacles from the motions of characters walking around
objects, the percentage of penetration frames of our method
is lower than SAMP (5.2%).

3. Datasets and Evaluation
3.1. Test setting

All experiments are trained and tested on the same
dataset. For each dataset, we select some test sequences
for providing the starting point, starting pose, and endpoint
as they are the input of our task. We do not use any other
information from the test sequences. As SAMP proposes
GoalNet [6] to generate the goal point on the object, we
compare our approach with previous methods on the SAMP
dataset using the generated goal from the GoalNet. For the
COUCH and NSM datasets, we use the goal point on the
object provided by the datasets. For each sequence, we run
experiments on unseen objects multiple times.

3.2. Datasets

SAMP. Since SAMP [6] does not provide the details
about their testing, we compare our method with other base-
lines in the following setting. On the SAMP [6] dataset,
6 sequences are selected as the testing sequences from the
original paper [6]. For each sequence, we test with 3 unseen
objects and generate 10 sequences for each object. There-
fore, there are 180 generated sequences in total.

COUCH. The COUCH dataset [30] provides 100 test-
ing sequences and 30 objects for testing from their released
code, we do not have enough computation resources for run-
ning on all combinations of test sequences and objects. We
select 30 sequences for the starting point, starting pose, and
endpoint. For each sequence, we choose 1 object and gen-

Figure 5. User study GUI. The volunteer is asked to rate se-
quences using the provided GUI.

erate 5 sequences. Consequently, we have 150 sequences in
total and test with all objects.

NSM. On the NSM [19] dataset, we remove the se-
quences that contain the interactions with dynamic objects
and select 4 sequences as the testing sequences for our
method. For NSM [19], we use the provided pre-trained
model and we retrain SAMP [6] on all data. For each se-
quence, we test with 1 object and generate 10 sequences for
each object.

PROX. Given that [24] did not release their annotations
of actions on the PROX [7], we do not conduct experiments
on the PROX [7] dataset.

3.3. Metrics

FD. Like previous work [6, 24], we employ FD [9] to
measure the motion quality. We calculate FD using the fol-
lowing features Xi = {wθ

i ,w
r
i } at frame i in the sequence,

where wθ
i and wr

i are high-dimensional features about lo-
cal poses and trajectories at frame i. To be more specific,
wθ

i ∈ R135T and wr
i ∈ R4T are the human poses and the

root trajectories relative to the root of frame i with length
T = 13 sampled uniformly in a 2-second window between
[−1, 1] seconds [19, 6, 30]. The human pose is represented
by the pelvis position and the 6D rotations [33] of 22 joints
which is 135 dimensions in total. The root trajectory is rep-
resented by the position and the direction which are 4 di-
mensions. Following the form of FID [9], we calculate the
distribution of Xi and compare it with the ground-truth data
[6].

User study. We invite some volunteers from different
backgrounds to rate generated results. Each sequence is
scored by at least 3 participants. The highest score is 5 and
the lowest score is 1. The volunteer is asked to consider
both physical plausibility and motion naturalness to rate se-
quences. The user study GUI is shown in Fig. 5.



APD. We employ APD like previous work [6, 24] to mea-
sure the diversity. We calculate motion APD, pose APD,
and trajectory APD.

Motion APD. For motion diversity, we employ the formal
definition of Frechét distance [1] to measure the distance
between the predictions of various lengths. For sequence
A and sequence B, the distance is defined as the infimum
over all reparameterizations α and β of [0, 1] of the maxi-
mum over all t ∈ [0, 1] of the distance between A(α(t)) and
B(β(t))) [1], which is shown as

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))}. (4)

It should be noticed that this form is different from the
FD used for measuring motion quality [9]. Since the to-
tal length of the generated sequences can be hundreds of
frames, we select the frames with an interval of 30 for fast
calculation. We use the human pose in these frames, which
contains the pelvis position and the 6D rotations of 22 joints
relative to its root, to calculate the distance.

Pose APD. We use the pose that human interacts with the
object for pose APD. We measure the pose APD using the
6D rotations of human poses which are 132 dimensions.

Trajectory APD. For trajectory diversity, we also employ
the formal definition of Frechét distance [1] to measure the
distance between the predictions of various lengths. This
form is the same as the one for measuring motion diversity
[1]. Like motion APD, we select the frames with an interval
of 30 for fast calculation. We use the root positions at these
frames relative to the starting point to calculate the distance.

PE and RE. We calculate the positional error (PE) and
rotational error (RE) when reaching the goal location of the
object like previous works [19, 6]. We do not calculate them
on the COUCH dataset [30] as the objects from the COUCH
dataset are not annotated by the target goal position, which
is the target pelvis position when the character sits on the
object. From the released code of COUCH [30], they di-
rectly use the position of the object but the position of the
object is not identical to the pelvis. As a result, the PE and
RE in the COUCH dataset cannot represent the precision of
the character’s pelvis.

Penetration ratio. The penetration ratio between the
character and the object is calculated in a similar way as
the non-collision score proposed by [31]. Since there is
no scene geometry, we do not calculate the contact score
[31, 29, 25, 24]. Instead, we use foot sliding to measure the
physical plausibility.

Percentage of frames with penetration. We calculate
the penetration ratio of each frame in a sequence to indi-
cate whether the character collides with the environment

[6]. Then the percentage of frames with penetration is the
percentage that the penetration ratio is larger than 0.

Foot sliding. Similar to [20], foot sliding is calculated by
finding the closest foot joint of the body to the ground and
measuring its velocity. We only calculate foot sliding when
the character is walking since it may slide its feet during
sitting and lying down.

4. Details and Analysis of Baselines

4.1. Implementation details of baselines

We compare our approach with online methods includ-
ing NSM [19], SAMP [6], and COUCH [30] as they are
the most relevant ones to this setting. Most other auto-
regressive methods are not designed for human-object in-
teractions [11, 32]. We also compare with offline methods
including SLT [25] and TDNS [24] as they focus on long-
term motion generation while others are short-term [3, 26].
Because they are conducted in different settings, we modify
their inputs and outputs to our settings.

NSM. We directly use the released models from NSM for
the experiments on the NSM dataset [19]. We train NSM
on the COUCH dataset [30] and the input and output are
the same as the ones on the NSM dataset. We do not run
NSM on the SAMP dataset [6] as the SAMP dataset does
not provide the phase labels.

SAMP. We directly use the released models from SAMP
for the experiments on the SAMP dataset [19]. We train
SAMP on the NSM dataset [19] and COUCH dataset [30],
where the input and output are the same as the ones on the
SAMP dataset.

COUCH. As COUCH [30] only releases its code and data
without pre-trained models, we train COUCH using their
released code. We only conduct COUCH on the COUCH
dataset as it requires the input of hand contacts. The hand
contact model is trained from the COUCH dataset, so we do
not run COUCH on other datasets.

SLT. SLT [25] conducts experiments on the PROX dataset
in a very different setting from ours. The original SLT [25]
requires the path points provided by users and only tests for
at most 6 seconds. We modify it [25] to our setting and use
A∗ [5] to generate paths. We select points along the path,
forming the provided path points for SLT. As the original
input is the point cloud of the scene, we replace it with the
same object representation as our method. As SLT [25] as-
sumes SMPL [13, 17, 15] representation, we do not conduct



it on the NSM dataset as the character from the NSM dataset
is different.

TDNS. TDNS [24] conducts experiments on the PROX
dataset [7] and did not release the code. The original setting
of TDNS [24] uses the point cloud of the scene. We replace
it with the same object representation as our method. They
employ POSA [8] to find the location of the synthesized in-
teraction anchor in the scene. However, we only have one
object so we use the goal predicted by GoalNet [6] or pro-
vided by datasets [19, 30], and keep POSA [8] for post-
processing. As TDNS [24] also assumes SMPL [13, 17, 15]
representation, we do not conduct it on the NSM dataset as
the character from the NSM dataset is different.

4.2. Analysis of the baselines

We further analyze the results of SLT [25] and TDNS
[24] to show that our implementation is promising. As in-
dicated by the results in Tab. 4, the FD of motion quality
increases by using A∗ and Neural Mapper [24]. This is
consistent in Tab. 1 in the main paper that SLT [25] and
TDNS [24] have much higher FD. Furthermore, SLT and
TDNS employ cVAE-based architectures while we employ
DDPM, which leads to another FD gap. Consequently, we
think the margins between our method and baselines are
promising.

5. Details and Analysis of Ablations

5.1. Implementation details of ablations

Impact of each sub-module. We provide more details
about how we construct the variants.

Without GP: We remove the goal pose module in our
framework. Therefore, we directly synthesize the mile-
stones based on the object and the starting point. Then we
generate the trajectories and infill the motions.

Without MP: We remove the milestone pose generation
module. Then we directly generate the motions based on the
trajectory in a sequence-level auto-regressive way. Specif-
ically, we still employ the same network architecture as
the motion infilling module and remove the condition of
the pose at the last frame. We first synthesized motions
along the trajectory with a sequence length of 61. Then
we input the pose of the last frame and generate another
sequence of motions with length 61. We keep this process
auto-regressively and obtain the final results.

Without MT: We remove the milestone point generation
module. We directly synthesize the whole trajectory with
hundreds of frames. Then we synthesize the motions in the
same way as the variant without MP. The GPU memory of
this variant is large and directly training it with the batch-
size 256 leads to GPU explosion. We are forced to use a

Variants FD ↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
cVAE 27.06 3.36 3.27 90.52 4.36 0.47

DDPM 34.22 3.75 3.37 84.76 4.31 0.49
VQ-VAE 24.77 3.78 3.87 89.19 4.27 0.48

Part VQ-VAE 22.34 4.06 4.52 91.38 4.00 0.50

Table 2. Ablation study of goal pose generation. We implement
the goal pose module with different architectures.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
Part VQ-VAE 28.71 3.85 3.62 83.51 4.32 0.89

DDPM 22.34 4.06 4.52 91.38 4.00 0.50

Table 3. Ablation study of part VQ-VAE for motion infilling.
We replace the DDPM as part VQ-VAE to predict motions.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
A∗ 40.59 4.07 4.42 42.98 4.24 0.88

NM [24] 40.54 4.15 4.31 52.74 4.15 0.96
MT 22.34 4.06 4.52 91.38 4.00 0.50

Table 4. Ablation study of milestone generation. We compare
our method with the variant based on the path generated by A∗

path planning [5]. NM: Neural Mapper [24]. MT: milestone point
generation.

small batchsize 16 and train this variant for 6 days while
the milestone point generation costs around 12 hours.

Without TC: We remove the trajectory completion mod-
ule. Instead, we generate the motions and trajectory in one
network together.

5.2. More analysis of ablations

Goal pose generation. For the variant that employs part
VQ-VAE for motion infilling, we encode the continuous
pose into the part VQ representation and employ the trans-
former to predict the codes. As shown in Tab. 2 and Tab. 3,
the part VQ-VAE achieves better performance for goal pose
generation but inferior performance for motion infilling
than DDPM. We think the reason might be that the motion
data is sufficient for continuous methods like DDPM but the
goal pose data is not enough as most frames in a sequence
are walking instead of sitting or lying.

Milestone generation. We use A∗ to plan the path instead
of directly connecting the object and the starting point be-
cause connecting two points without A∗ may give colliding
paths when the start point is behind the object (as shown in
Fig. 6). Although A∗ is deterministic, the trajectories are
not deterministic because the GoalNet [6] generates diverse
goals on the object. As demonstrated in Tab. 4, the motion
quality and the diversity of trajectories of these variants are
worse. The reason why these variants perform poorly might
be the low diversity of trajectory that affects the distribution
of generated motions for calculating FD.



Figure 6. The necessity of applying A∗. A∗ (green lines) vs. con-
necting two points (red lines) when it is behind the object.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
Auto-regressive 33.39 4.07 3.66 76.48 6.87 0.98

Ours 22.34 4.06 4.52 91.38 4.00 0.50

Table 5. Ablation study of the hierarchical generation frame-
work. Auto-regressive means we remove the hierarchical motion
generation pipeline and employ an auto-regressive model to gen-
erate motions.

Order FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
A 22.80 4.01 4.35 94.44 4.09 0.47
B 22.93 4.12 4.46 94.21 4.02 0.52

Ours 22.34 4.06 4.52 91.38 4.00 0.50

Table 6. Part order. Different orders have similar results. A order:
left leg, right leg, right hand, left hand. B order: right hand, left
hand, body, left leg, right leg.

6. More Ablations
6.1. Design choice of the framework

Hierarchical motion generation. We build a variant
without multi-stage motion generation to study the effect of
our hierarchical motion generation pipeline. Specifically,
we only employ the goal pose module to explicitly gener-
ate the goal pose. And we input the goal pose to SAMP as
the condition to generate the motions auto-regressively. As
demonstrated in Tab. 5, without hierarchical modeling, the
generated motion quality is much worse than ours, where
the FD increases.

6.2. Design choice of the submodules

Part orders. Different orders do not make significant dif-
ferences as shown by Tab. 6.

Length prediction. To explore the effect of length pre-
diction, we compare it with the variant that determines the
length by the distance to the goal as N = ⌈D/h⌉ where
h is the distance the character may walk in 2 seconds (61
frames). As demonstrated in Tab. 7, the diversity of gener-
ated trajectories of the variant is much worse. We find that
the character is forced to walk directly toward the object

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
Distance 28.96 3.95 4.19 49.22 4.08 0.65

LP 22.34 4.06 4.52 91.38 4.00 0.50

Table 7. Abaltion study of length prediction. We compare our
method with the variant that uses distance as the length. LP:
Length prediction.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
S [25] 29.44 4.33 4.37 88.02 4.30 0.53
Shared 23.14 4.06 4.52 90.74 4.16 0.52

MP 22.34 4.06 4.52 91.38 4.00 0.50

Table 8. Ablation study of the impact of milestone pose gen-
eration. S: generating the milestone pose separately. Shared: a
shared model to generate milestone points and poses together.

Method FD↓ Parameters (M) ↓ Training (hour)↓ Inference (second)↓
MoE 74.33 15.9 8 1.30

SAMP 57.34 18.5 9 1.49
SLT∗ 68.83 6.0 11 177.32 (0.04)

TDNS∗ 46.60 23.7 36 180.51 (3.24)
Ours 22.34 28.3 35 7.13

Table 9. Complexity. The training and inference time (720
frames) on a TITAN Xp GPU. The numbers in brackets are in-
ference time without optimization.

due to the length restriction. The motion quality also drops.
This experiment shows that the diversity of the trajectory is
important to the motion quality.

Milestone pose generation. To further analyze the effect
of milestone pose generation, we compare it with the vari-
ant that generates the static poses separately like SLT [25],
which does not consider the temporal dependency of the
poses. Here, we employ our proposed part VQ-VAE instead
of cVAE in SLT to avoid the effect of the architecture of the
pose generation. As demonstrated in Tab. 8, generating the
poses separately shows a little higher motion diversity as
indicated by APDM . The reason is that generating poses
separately makes the results more diverse, but this variant
does not consider the temporal dependency which leads to
much worse motion quality. We also implement a variant
that employs a shared model to generate milestone points
and poses together. As the results of this variant are worse,
we apply separate models to generate milestone points and
poses like previous works [25, 24].

Parameters. Tab. 9 compares the parameters, training
time, and inference time on the SAMP dataset [6]. Our
method exhibits comparable parameters and training time
to TDNS [24] while achieving a much lower FD. Com-
pared with offline methods such as TDNS and SLT [25],
our method produces superior results without the need for



inference-time optimization.

7. Qualitative Results
7.1. Visualization of generated trajectories.

Fig. 7 compares the generated trajectories by our method
and other baselines. As shown in the figure, our generated
trajectories are more diverse than baseline methods. Specif-
ically, the baseline methods are prone to walk straightly to-
ward the object while our method is able to reach the target
object in two directions.

7.2. Visualization of the length of the generated se-
quences.

Fig. 8 compares the length of the sequences. We calcu-
late the length from the character starts to walk to the char-
acter finishes sitting. As shown in the figure, our results are
more similar to the dataset.

7.3. More qualitative results on the SAMP dataset.

Fig. 9 compares the poses that the character interacts
with the object on the SAMP dataset. As shown by the fig-
ure, our results are more diverse than the baselines.

7.4. Qualitative results on the COUCH dataset.

Fig. 10 compares the poses that the character interacts
with the object on the COUCH dataset. We achieve more
diverse results than the baselines.

7.5. Qualitative results on the NSM dataset.

Fig. 11 compares our method with SAMP and NSM on
the NSM dataset. Fig. 12 compares the poses that the char-
acter interacts with the object on the NSM dataset. As the
character in the dataset interacts with the object of the same
category in a similar way, the baselines generate similar re-
sults. Our approach can generate more diverse results than
the baselines.

7.6. Visualization of generated motions.

We provide a video to show more qualitative results on
the NSM [19], SAMP [6], and COUCH [30] datasets. The
comparisons with these baselines are also included in the
video. We also demonstrate some case studies and failure
cases in the video. To better evaluate the motion quality, we
highly recommend readers watch the video.

8. Discussions
8.1. Online vs. offline.

Although it seems that online methods [19, 6, 30] can
tackle most scenarios, our offline method achieves better
performance in our setting. Offline methods [25, 24] are

suitable for 3D content creation and the movie industry.
However, offline methods cannot replace online methods
as they cannot be applied to interactive applications like
games. Furthermore, we assume the scene is static and our
method cannot handle moving objects. The choice of dif-
ferent methods depends on the demand.

8.2. Case study.

Distance to the object. When the object is close to the
character, the character would walk with small steps and
sits on the object. However, it may generate unrealistic mo-
tions with severe foot sliding if the object is too far from the
character as the dataset lacks such data.

Distance between milestones. We follow previous works
[25, 24] to set the frame number between milestones as a
static hyperparameter, and the arbitrary length generation is
accomplished by the length prediction head. We find that
the distances between generated milestones are not equal.
If the distance between milestones is large, the character
would walk faster. If the distance is small, the character
would walk slower. The provided video also shows that the
character’s walking speed is not constant. However, if the
predicted distance is too large, the model would generate
motions with more sliding. Because our method predicts
the length of milestones, this situation hardly ever happens
unless the character is too far from the object which is out
of the dataset distribution.

Starting actions. Although the training sequences in the
dataset is that a character approaches the object, sits on it,
and then leaves for the endpoint, we find our method and
SAMP [6] can synthesize motions that start from sitting and
sits on another object.

Other failure cases. Although we apply a transformer to
learn the distribution of the codes of goal pose, our model
may predict a wrong combination of codes. However, the
overall performance is better than continuous methods and
the continuous methods may also generate unrealistic poses.

8.3. Limitations.

As discussed above, our method cannot handle moving
objects and the slow inference speed makes it hard for a
real-time generation. The longest length of the generated
motions is restricted by the dataset as the ground-truth data
of the length prediction head is from the dataset. Further-
more, because the trajectory completion module and the
motion infilling module do not consider the motion depen-
dency between non-consecutive milestones, minor discon-
tinuity exists. We try to eliminate this by interpolation.
Specifically, for each subsequence, we predict additional
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Figure 7. The visualization of 10 generated trajectories when given the same starting point and the endpoint. Compared with baseline
methods [6, 24], our method generates more diverse trajectories. Triangles indicate starting point and the endpoint. Squares indicate the
target object.

TDNSSAMP Ours

Figure 8. The distribution of the length of the generated sequences. We calculate the length of the motions that the character starts to
walk and finishes the sitting action. Our results are more similar to the dataset distribution.

frames beyond the milestones. Then, we interpolate the
two poses in the overlapped frames of two subsequences for
smoother transitions. After processing, the FD decreases
from 22.42 to 22.34, and the foot sliding increases from
0.49 to 0.50. We find this strategy shows better visual qual-
ity with only a little sacrifice of foot sliding. However, we
can still observe some foot sliding in our results. Meth-
ods like [27] might mitigate this by simulating motions in
physical engines with the guide of our generated kinematic
results.
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