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DeFlowSLAM: Self-Supervised Scene Motion
Decomposition for Dynamic Dense SLAM

Weicai Ye*, Xingyuan Yu*, Xinyue Lan, Yuhang Ming, Jinyu Li, Hujun Bao, Zhaopeng Cui and Guofeng Zhang

Abstract—We present a novel dual-flow representation of
scene motion that decomposes the optical flow into a static
flow field caused by the camera motion and another dynamic
flow field caused by the objects’ movements in the scene.
Based on this representation, we present a dynamic SLAM,
dubbed DeFlowSLAM, that exploits both static and dynamic
pixels in the images to solve the camera poses, rather than
simply using static background pixels as other dynamic SLAM
systems do. We propose a dynamic update module to train
our DeFlowSLAM in a self-supervised manner, where a dense
bundle adjustment layer takes in estimated static flow fields
and the weights controlled by the dynamic mask and outputs
the residual of the optimized static flow fields, camera poses,
and inverse depths. The static and dynamic flow fields are
estimated by warping the current image to the neighboring
images, and the optical flow can be obtained by summing the
two fields. Extensive experiments demonstrate that DeFlowSLAM
generalizes well to both static and dynamic scenes as it exhibits
comparable performance to the state-of-the-art DROID-SLAM in
static and less dynamic scenes while significantly outperforming
DROID-SLAM in highly dynamic environments. The code and
pre-trained model will be available on the project webpage:
https://zju3dv.github.io/deflowslam/.

Index Terms—Dual-Flow Representation, Dynamic Dense
SLAM, Dynamic Update Module, Motion Estimation.

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is
fundamental to the field of computer vision and robotics,

with many applications ranging from augmented reality (AR),
and virtual reality (VR) to autonomous driving. In AR ap-
plications, SLAM is often leveraged to provide accurate lo-
calization for agents, which facilitates users to place virtual
objects [1], while the dense reconstruction is urgently needed
to better interact with the surrounding environments. Due
to the simplicity of monocular video acquisition, monocular
dense SLAM [2], [3] has attracted wide attention, yet it is still
a more complicated task compared to RGB-D SLAM [4]–[8].

Impressive progress has been seen in geometry-based [9]–
[12], learning-based [13]–[15], and hybrid approaches [16]–
[18]. However, it is still a challenging problem to develop
robust and reliable SLAM methods for real-world AR applica-
tions, especially in dynamic scenarios. To meet the challenges
of such dynamic environments, some approaches [19], [20]
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Fig. 1. Dual-Flow Representation. The estimated optical flow is decomposed
into a static flow caused by the camera pose and a dynamic flow caused by
the dynamic object’s motion.

filter out dynamic objects in advance by introducing infor-
mation such as semantics, e.g., using Mask R-CNN [21] to
segment out potentially moving vehicles and pedestrians, and
then run monocular SLAM systems such as ORB-SLAM [10].
However, due to the slow running speed and high memory
consumption of Mask-RCNN, it is difficult to meet the real-
time requirement of SLAM. What’s more, there are limits
in practical applications, for not all dynamic objects exist
in the detector’s training data and may lead to catastrophic
system failure [4]. Besides, simply throwing away dynamic
information and only constructing sparse feature maps makes
such SLAM methods incapable of handling tasks like planning
and interaction. Some approaches [22], [23] combine multi-
object detection and SLAM, making it possible to add target-
aware constraints to eliminate the interference of dynamic
objects, but the generalization of such SLAM systems is
limited as well due to the detector.

Recently, a learning-based dense SLAM system, DROID-
SLAM [24], has been proposed, which demonstrates better
accuracy and robustness than traditional methods. However,
we find that it has relatively large errors in the pose estimation
in some stronger dynamic scenarios such as sequence 09
of KITTI [25]. DROID-SLAM [24] presents a dense bundle
adjustment layer to iteratively update the residual of inverse
depths and camera poses using the estimated optical flow and
weights, while the presence of dynamic objects may lead to
ambiguity in optical flow estimation if the system failed to
discover them. For this reason, we propose a novel scene
motion representation, named dual-flow, that decomposes the
estimated optical flow into a static flow caused by the camera
poses and a dynamic flow of the dynamic object’s own motion,
as shown in Fig. 1. Such a representation largely mimics
the way humans perceive the real world [26]. In addition,
DROID-SLAM introduces massive supervision for camera
pose, optical flow and depth estimation during training, which
severely restricts the possibility of fine-tuning new scenes if it
performs poorly in new scenes. On the contrary, we explore to
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train our dual-flow-based dynamic SLAM in a self-supervised
way.

Our insight is that for the vast majority of scenes, dynamic
objects may not be dominant and their motion can be decom-
posed by the dominant static objects. The representation based
on scene motion decomposition has natural advantages: 1) we
can easily optimize static fields in a similar way as DROID-
SLAM [24] does for the poses and depths. 2) For dynamic
fields, we can obtain consistent luminosity by warping the
current frame to adjacent frames. 3) This holds promise for
obtaining a self-supervised network model, which is also
more interpretable. Based on these observations, we propose
a dynamic update module for DeFlowSLAM, in which the
dual-flow representation is cleverly embedded, as shown in
Fig. 2, and detailed in Sec III. Directly warping the dynamic
object field to the neighbor images may result in occlusion,
shown in Fig. 4, we introduce a dynamic mask aggregation
operator in the dynamic update module, named Mask-Agg to
remove the incorrect alignment effect. Specifically, the Mask-
Agg operator iteratively updates the residuals of the dynamic
mask via convolutional gated recurrent unit (ConvGRU) [27].
The final dynamic mask can be obtained by summing the ag-
gregated dynamic mask residuals with the original mask. The
obtained dynamic mask will be combined with the estimated
weights and then fed into the dense bundle adjustment (DBA)
Layer [24] to optimize the residuals of pose and depth, shown
in Fig. 3.

We first verify our hypothesis on a highly dynamic dataset,
Virtual KITTI2 [28], where ablation experiments demonstrate
that a dual-flow representation can achieve better performance.
In addition, DeFlowSLAM can make full use of information
from all pixels to solve the camera pose, resulting in gains
compared to potential approaches that filter dynamic objects
by masking. Applying our knowledge to the challenging
SLAM dataset, such as TartanAir [29], the trained model ex-
hibits good generalization and achieves comparable accuracy
to DROID-SLAM in both static and slightly dynamic scenes.
While in highly dynamic scenes, such as KITTI [25], our
method significantly outperforms DROID-SLAM, and even
the error in pose estimation is sharply reduced to half of
DROID-SLAM. Then, we simply extended it to stereo and
RGB-D datasets, showing the high scalability of the system.
In AR applications, DeFlowSLAM shows relatively accurate
pose estimation results, as shown in Fig. 9. In summary, our
contributions are three-fold:

• We propose a novel dual-flow scene motion representa-
tion that decomposes the optical flow into a static flow
field and a dynamic flow field.

• We develop a dynamic dense SLAM system based on
dual-flow representation with a dynamic update module,
which outperforms state-of-the-art methods in dynamic
scenes.

• We propose a self-supervised training method instead of
the strong supervision in DROID-SLAM [24].

II. RELATED WORK

A. Scene Motion Decomposition

Scene motion estimation aims to obtain the 3D structure and
3D motion of dynamic scenes, and has received increasing
attention for 3D perception. Recently, several scene motion
estimation methods have been proposed according to the type
of input data, such as 3D point clouds [30], [31], stereo
images [32]–[34], or RGB-D images [35]–[38]. Comparatively
few approaches have been studied for monocular scene motion
estimation so far, as it is a highly ill-posed problem [39].
Here, we focus on monocular videos and the scene motion
estimation can be regarded as optical flow [40]–[43]. Recently,
a state-of-the art optical flow estimation method, RAFT [27]
has been proposed, but it does not consider the scene motion
decomposition. EffiScene [44] presents an unsupervised scene
flow estimation method by jointly learning optical flow, depth,
camera pose, and motion segmentation. Different from the
forward and backward flow proposed by DF-VO [45], we
attempt to decompose the optical flow to a static field caused
by the camera pose and a dynamic field caused by the objects’
own motion, exploiting the properties [46] of the scene flow
itself, which inherently separates every pixel into multiple
moving agents and a large class of points that follow a same
rigid motion.

B. Dynamic SLAM

SLAM is a fundamental capability of many intelligent
systems to perform accurate pose estimation and mapping.
Humans live in a dynamic environment, intelligent systems
should also have the ability to deal with dynamic environ-
ments, which are required to recognize the dynamic contents
from the static environments. Traditional approaches largely
filter out the interference of dynamic objects by introducing a
prior [47] or RANSAC methods [48]. Some recent approaches
try to use segmentation to filter out potential dynamic ob-
jects [19], [20], [49] and then run the SLAM system, or unify
object detection and SLAM into a multi-task system [23], [50],
[51] or add the object constraint to the SLAM system [22],
[52], [53]. Unlike existing approaches, this paper uses a
learning-based approach to identify dynamic fields at the pixel
level, which does not require explicit supervision of object
detection and better simulates the way humans perceive the
world.

C. Dense Reconstruction

Reconstructing dense volumetric scenes is a cornerstone
in robotics with many applications such as city modeling,
augmented reality navigation [54], and cultural heritage preser-
vation [55]. Most of the existing systems [56]–[60] need to use
depth or lidar information for dense reconstruction, this paper
does not have this limitation, and can support data formats
such as monocular video, stereo, and RGB-D, and can main-
tain a good reconstruction effect in the dynamic environment.
To improve the reconstruction performance, some approaches
propose collaborative reconstruction by multiple robots [61]–
[63]. As an example, Coxgraph [63] extends the single-robot



3

< . , . >

Image
Correlation 

Volume

Optical Flow

Dynamic Mask

Image 
Encoder

Dynamic
Update
Module

Optical flow

Depth

Pose

Covisibility Graph Optimization

Dynamic Flow Static Flow

Image i

Image j

Image 
Encoder

Static Flow

Initialization

Iterate N times

output

3D Map and 
Trajectory

Fig. 2. DeFlowSLAM Overview. DeFlowSLAM takes the image sequence as input, extracts features to construct a correlation volume, and feeds it with the
initial static flow, optical flow, and dynamic mask into the dynamic update module to iteratively optimize the residual of the pose, inverse depth, static flow,
and dynamic flow, and finally outputs the estimation of the camera pose and 3D structure. The optimization process is performed by creating a covisibility
graph and updating the existing covisibility graph.

reconstruction system, Voxgraph [56], to a multi-robot dense
reconstruction system, and additionally adds more constraints
to ensure low-error reconstruction. Our system is able to
maintain robust dense reconstruction with less constraint.
Some methods focus on dense depth reconstruction [64]–[66],
while our DeFlowSLAM focuses on pose estimation although
it can produce the intermediate depth and flow.

III. METHODOLOGY

Fig. 2 depicts an overview of our novel dual-flow-based
SLAM method, DeFlowSLAM, which takes as input a se-
quence of images and outputs the camera pose estimation
and the 3D map of the environments. DeFlowSLAM has an
end-to-end differentiable architecture as DROID-SLAM [24]
that leverages the strengths of both classical approaches and
deep networks. It can robustly cope with challenging scenarios
such as dynamic scenes, thanks to our proposed dual-flow
representation, iterative dynamic update module, and factor
graph optimization based on co-visibility between frames.
Specifically, unlike DROID-SLAM, which iteratively updates
the camera pose and depth, we additionally update a dynamic
mask and a dynamic flow. And we perform each update of
camera pose by the optimization of the estimated static flow
field rather than the optical flow in DROID-SLAM. Next, we
will first review DROID-SLAM [24] for understanding and
then elaborate on the details of our approach.

A. Preliminaries: DROID-SLAM

DROID-SLAM [24] operates on a sequence of images
{It}Nt=0, and maintains two state variables: camera pose Gt ∈
SE(3) and inverse depth dt ∈ RH×W

+ for each image t, which
are updated iteratively as new frames are processed. A frame
graph G = (V, E) is adopted to indicate co-visibility between
frames in DROID-SLAM, where the nodes are input images
and the edge (i, j) ∈ E implies that the images Ii and Ij have
overlapped views.

1) Feature Extraction and Correlation: Following RAFT
[27], the input images are first fed to the feature extraction
module, and the relationship between the two images will be
computed.
Feature Extraction. First, an image encoder, containing six
residual blocks and three downsampling layers, takes each
image as input and produces a dense image feature map,
which is 1/8 of the original resolution, and feature maps from
pairs of input images are used for later correlation volume
construction.
Correlation Pyramid. For each edge (i, j) ∈ E in the frame
graph G, DROID-SLAM [24] computes the correlation volume
Cij as the dot product of feature vector pairs taken from
fθ(Ii)uivi and fθ(Ij)ujvj :

Cij
uiviujvj = ⟨fθ(Ii)uivi , fθ(Ij)ujvj ⟩, (1)

where ui, vi, uj , vj are the pixel coordinates for image Ii, Ij
respectively and < . > stands for the dot product. The
last two dimensions of the correlation volume are fed to
the average pooling layers with four different kernel sizes
(1,2,4,8), forming a 4-level correlation pyramid [27].
Correlation Lookup. DROID-SLAM [24] defines a correla-
tion lookup operator that uses a coordinate grid with radius
r to index the correlation volume Lr : RH×W×H×W ×
RH×W×2 7→ RH×W×(r+1)2 . This correlation operator takes
an H ×W grid of coordinates of optical flow field as input,
and retrieves the values from the correlation volume by using
a bi-linear interpolation, which are concatenated to compute
the final feature vector. The lookup function is applied to every
correlation volume in the pyramid [24].

2) Update Module: DROID-SLAM [24] proposes an up-
date operator, in which a 3 × 3 convolutional GRU is used
to update the hidden state h, the camera pose G and depth
measurements d. The final pose and depth measurement can
be obtained by applying the incremental updates ∆ξ(k) and
∆d(k) to the current pose and depth estimates through retrac-
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Fig. 3. Dynamic Update Module. The correlation feature of the static flow is looked up by correlation volumes. The obtained features will be fed into two
convolutional layers together with the optical flow and dynamic mask, resulting in intermediate features. These features will be fed to ConvGRU, followed by
two convolution layers with dynamic mask residual and confidence. The iterative dynamic mask residual plus the original mask to obtain the new dynamic
mask termed Mask-Agg Operator. In addition, static flow revision and dynamic flow are obtained from the static and dynamic convolution layers. The static
revision flow plus the original static flow is fed into the DBA layer that combines the dynamic mask and confidence to optimize the depth and pose. Finally,
the new static and dynamic flows from the dynamic convolutional layer are summed to the optical flow.

tion on the SE3 manifold and vector addition respectively:

G(k+1) = Exp(∆ξ(k)) ◦G(k), d(k+1) = ∆d(k) + d(k).
(2)

The update operator [24] iteratively produces a sequence of
poses and depths with the goal of converging to a fixed point:
{G(k)} → G∗, {d(k)} → d∗.

B. Dual-Flow Representation

The core concept of the proposed dynamic SLAM network
is the dual-flow representation and the self-supervised training
scheme with a dynamic update module. In contrast to DROID-
SLAM [24], which uses optical flow as an intermediate motion
representation, we propose a novel scene motion representa-
tion by decomposing optical flow into a static flow caused
by camera motion and a dynamic flow caused by the motion
of dynamic objects themselves, as shown in Fig. 1. Such
a representation can distinguish between static and dynamic
object motions, thus having better interpretability and making
the network traceable during the training process. We can
directly use the dense static flow to estimate camera motion
without masking out the pixels belonging to dynamic objects.
The optical flow Fot ∈ RH×W×2, static flow Fst ∈ RH×W×2

and dynamic flow Fdt ∈ RH×W×2 are a set of vectors, where
the static flow plus the dynamic flow equals the optical flow:

Fot = Fst + Fdt. (3)

Our network also operates on a sequence of images {It}Nt=0

as DROID-SLAM [24]. As new frames being processed,
different from DROID-SLAM which updates the set of camera
poses {Gt}Nt=0 ∈ SE(3) and inverse depths {dt}Nt=0 ∈
RH×W

+ , in DeFlowSLAM, the static flows {Fst}Nt=0 ∈
RH×W×2, the dynamic flows {Fdt}Nt=0 ∈ RH×W×2 and the

binary dynamic masks {Mdt}Nt=0 ∈ RH×W×2
+ are addition-

ally update iteratively. We let 0 indicate dynamic while 1
indicate static in Mdt.

Similar to DROID-SLAM [24], a frame graph G = (V, E)
is also adopted to represent co-visibility between frames. For
example, as shown in the co-visibity graph optimization in
Fig. 2, the white nodes indicate each image, and the edges
indicate two images with a co-visibility relationship, where
the red points indicate image Ii and image Ij , and the blue
edges indicate the co-visibility relationship in the frame graph.
The frame graphs are built and updated dynamically during
the training and inference as DROID-SLAM [24]. After each
pose or depth update with the revision static flow field, the
frame graph with new co-visibilities will be updated. When
a loop closure occurs, a long-distance connection is added to
the frame graph.

C. Dynamic Update Module

Fig. 3 demonstrates the dynamic update module of our
DeFlowSLAM, which is a 3 × 3 ConvGRU with a hidden
state h. Different from the update module in DROID-SLAM
[24], which works directly on the revision optical flow, our
dynamic update module works on the decomposed static and
dynamic flow fields respectively. We update the revision static
flow field in a similar way to DROID-SLAM, while for the
dynamic flow field, we add it to the static flow field to obtain
the optical flow, which is fed into the flow encoder as a
new optimization term in the next iteration. In every iteration
during updating, the module will produce a pose increment,
depth increment, dynamic mask increment, and dynamic flow.
The pose increments are applied to the current pose through
retraction on the SE3 manifold as DROID-SLAM [24]:

G(k+1) = Exp(∆ξ(k)) ◦G(k). (4)
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While the depth and the dynamic mask increments are added
to the current depth and dynamic mask respectively [51]:

Ξ(k+1) = ∆Ξ(k) + Ξ(k), Ξ ∈ {d,Md}. (5)

where Fd
(k+1) is directly given a new value in every iteration.

With the updated static flow Fs
(k+1) transformed from G(k+1)

and d(k+1), the final optical flow can be computed using Eq. 3.
Different from iterative operations of the update module

in DROID-SLAM [24], which produces a sequence of poses,
and depths, our dynamic update module additionally produces
dynamic masks, dynamic flows, and complete optical flows
with the expectation of converting to an optimal point, such as
{G(k)} → G∗, {d(k)} → d∗, {Md

(k)} → Md
∗, {Fd

(k)} →
Fd

∗, {Fo
(k)} → Fo

∗, representing the true reconstruction.
1) Correspondence: At the beginning of each iteration,

we use the current pose and depth estimates to search for
correspondence like DROID-SLAM [24]. Take edge (i, j) ∈ E
in the frame graph as an example, we set frame i as the
current frame. So pi is actually a group of grid coordinates
related to the shape of frames. To get the dense corresponding
coordinates pij in frame j, we can use two poses and a depth
map to complete the projecting process:

pij = Πc(Gij ◦Π−1
c (pi,di)), Gij = Gj ◦G−1

i . (6)

where Πc is the camera model that maps a set of 3D points
onto the image, and Π−1

c is the inverse projection function
that maps the inverse depth map d and pi to the 3D point
cloud [51].

2) Inputs: Following DROID-SLAM [24], we use the same
way to retrieve the correlation features. In addition, we use
the dense correspondence field to derive the static optical
flow revision caused by the camera motion, i.e., the difference
between pij−pj , which is Fsij . For the initial dynamic mask
Mdij and the initial dynamic flow Fdij , we simply initialize
them to zeros.

3) Dynamic Update: Similar to DROID-SLAM [24], we
also use a ConvGRU network for the iteration of the dynamic
update module. Different from DROID-SLAM, which only
produces a revised optical flow field and a correlation con-
fidence map wij ∈ RH×W×2, our dynamic update module
instead produces several outputs mentioned below: (1) a
revised static flow field rsij ∈ RH×W×2, (2) an updated
dynamic flow field Fdij ∈ RH×W×2, (3) a correlation
confidence map wij ∈ RH×W×2, (4) an updated dynamic
mask increment field ∆Mdij ∈ RH×W×2. The revision rsij
is used to correct errors in the dense correspondence fields,
which can be expressed as ps

∗
ij = rsij + psij [24]. The

maps predicted by the module are in low resolution. To obtain
the original resolution maps, we follow the mask upsample
method mentioned in DROID-SLAM to get better upsample
results and predict a pixel-level damping factor map λ.

4) Dense Bundle Adjustment Layer (DBA): After we get
the revised static flow field, we optimize the poses and depth
maps using a dense bundle adjustment algorithm in DROID-
SLAM [24]. The cost function is defined as follows:

E(G′,d′) =
∑

(i,j)∈E

∥∥ps
∗
ij −Πc(G

′
ij ◦Π−1

c (pi,d
′
i))

∥∥2
Σij

,

(7)

Fig. 4. Mask-Agg Illustration. If there are dynamic objects in the scene,
directly matching pixels using static flow will cause erroneous results, making
photometric loss invalid. Using the aggregated mask predicted by the network,
we can filter out these invalid pixels (e.g. the pink mask) in geometry
photometric loss, which is shown in the right bottom picture.

Σij = diagwdij , (8)

wdij = sigmoid(wij + (1−Mdij) · η), (9)

where η is set as 10. And ∥·∥Σ is the Mahalanobis distance,
which weights the error term according to the combined con-
fidence wdij [51]. Note that we introduce the dynamic mask
Mdij here to make sure the optimization considers all needed
points. It can make the optimization process work better
in dynamic environments. The addition of these points can
effectively improve the accuracy of BA operation in dynamic
scenes. During BA optimization, we use the same Gauss-
Newton algorithm to solve the linear system, like DROID-
SLAM. We also use Schur’s complement to accelerate the
solving process. The DBA layer will not influence the gradient
backpropagation as it is also in the computation graph. More
details can be found in [24].

D. Loss Function

In this section, we elaborate on the self-supervised training
scheme for DeFlowSLAM in detail.

1) Geometry Photometric Loss: To supervise the geometric
predictions using images, we introduce a photometric repro-
jection loss to guide the network’s optimization. We refer
to [67] to build our photometric loss function. Given the
predicted pose Gij and the predicted depth d̂i, we can get
the corresponding coordinates of pixels in image Ii in image
Ij . We then use bi-linear sampling to sample the image Ij ,
getting a new-sampled image Ij→i:

Ij→i = Ij

〈
Πc(Gij ◦Π−1

c (pi, d̂i))
〉
. (10)

Then we can use the photometric loss on source image Ii and
new image Ij→i:

Lgeo ph =
1

N

∑
ij

pe (Ii, Ij→i) . (11)

We leverage L1 loss and SSIM [68] loss to form our
geometry photometric loss with α = 0.85:

pe (Ia, Ib) =
α

2
(1− SSIM (Ia, Ib)) + (1− α) ∥Ia − Ib∥1 .

(12)
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2) Mask Aggregation Operator for Geometry: In the self-
supervised training policy, when using the photometric loss
to supervise camera poses and depths, the direct use of the
dual-flow representation may result in pixel mismatches due
to the object’s motion, making the geometry photometric loss
less accurate. So we propose a mask aggregation operator,
i.e. Mask-Agg, to filter out the wrong pixel matches to
enhance our dual-flow representation, as shown in Fig. 4. The
aggregated mask MAgg

di
for frame Ii is computed by gathering

the dynamic masks estimated for all the frames which are
connected to frame Ii in the frame graph. Then, the final
geometry photometric loss function is:

Lgeo ph =
1

N ′

∑
ij

pe (Ii, Ij→i) ·MAgg
di

. (13)

where N
′

means the count of pixels whose MAgg
di

value
is 1. Specifically, the Mask-Agg operator iteratively updates
the residuals of the dynamic mask via ConvGRU. The final
dynamic mask can be obtained by summing the aggregated
dynamic mask residuals with the original old mask. Tab. I
shows the Mask-Agg module helps filter out the ambiguous
matches in self-supervised training, obtaining better results.

3) Optical Flow Photometric Loss: The geometry photo-
metric loss is used to supervise the static flow caused by cam-
era motion. So we also introduce the optical flow photometric
loss to supervise the complete scene motion, including camera
motion and objects’ motion. Through the update module, we
can get the optical flow results Foij by adding static flow
and dynamic flow. Similar to the geometry photometric loss,
we use Foij to generate corresponding coordinates between
images:

Ij→i = Ij
〈
Foij + pij

〉
. (14)

Then we still use bi-linear sampling to sample from the source
image, evaluate their photometric errors:

Lflow ph =
∑
ij

pe (Ii, Ij→i) . (15)

where the pe function here is just L1 loss:

pe (Ia, Ib) = ∥Ia − Ib∥1 . (16)

4) Supervised Mask Loss: When dynamic mask labels are
available, we can directly supervise our predicted masks using
a simple cross-entropy classification loss [69]:

Lgt mask = − 1

|N |
∑
pi∈N

Mi log M̂i+(1−Mi) log
(
1− M̂i

)
.

(17)
where Mi is the ground truth mask labels, M̂i is the predicted
masks.

5) Artificial Mask Loss: When the dynamic mask labels
are not available, we design a method to artificially build
the referred masks for self-supervised dynamic mask learning.
Referred to SLIM [46], we propose artificial mask loss to
achieve this goal. Using the camera pose, depth, and optical
flow we have already gotten, we can first infer the target
coordinate of the pixel p following the equations below:

pcam = Πc(Gij ◦Π−1
c (pi, d̂i)),pflow = pi + F̂oij . (18)

Fig. 5. Qualitative Results of DeFlowSLAM. DeFlowSLAM can generalize
to new datasets, such as ETH3D, TUM RGB-D, ScanNet and Virtual KITTI2.

where pcam is the target coordinate calculated by projection,
pflow is the target coordinate calculated by optical flow. Then
we use the difference between these two coordinates to form
our artificial mask labels:

Mart
i = [∥pcam − pflow∥2 ≤ µ], (19)

where µ is set as 0.5. This artificial mask label has the same
format compared with ground truth mask labels, so our final
loss function should be:

Lart mask =− 1

|N |
∑
pi∈N

Mart
i log M̂i+

(
1−Mart

i

)
log

(
1− M̂i

)
. (20)

6) Final Loss Function: We use Lgeo ph, Lflow ph and
Lart mask for self-supervised training. The supervised final loss
function is

Lself-sup = λ1Lgeo ph + λ2Lflow ph + λ3Lart mask. (21)

where λ1 = 100, λ2 = 5, and λ3 = 0.05. Since the network
has several update iterations, we use γ = 0.9 to apply the loss
to the output of each iteration with exponentially increasing
weights. For semi-supervised learning, we modify the Lart mask
to the Lgt mask.

E. Implementation Details

1) Training Details: We implement DeFlowSLAM in Py-
Torch and use the LieTorch extension [70] to perform back-
propagation in the tangent space of all group elements. In
the ablation study, we trained DeFlowSLAM on the Virtual
KITTI2 dataset [28] with 2 RTX-3090 GPUs for 80,000 steps,
which took about 2 days. While for the TartanAir dataset
[29], it takes 5 days for 250k steps with a batch size of 4
and resolution of 344 × 464 on 4 RTX-3090 GPUs. In the
monocular setup, we fix the first two poses as the true pose for
each training sequence as DROID-SLAM [24], for the network
can only recover the trajectory of the camera to the similarity
transformation. In addition, there are still normative degrees of
uncertainty during training, which may have an impact on the
stability in terms of regulation and gradients. During training,
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TABLE I
ABLATION STUDY OF DEFLOWSLAM TRAINED AND TESTED ON

VITUAL KITTI2 (VK) DATASET. SS MEANS SELF-SUPERVISED, SM
MEANS SEMI-SUPERVISED, SF MEANS SINGLE FLOW, DF MEANS DUAL

FLOW, AND MA MEANS MASK-AGG.

Monocular VK01 VK02 VK06 VK18 VK20

DROID-SLAM* [24] 1.091 0.025 0.113 1.156 8.285
Ours (SM, DF) 0.761 0.069 0.11 0.737 2.546
Ours (SS, SF) 4.278 0.187 0.142 1.248 10.487
Ours (SS, DF) 1.099 0.094 1.984 0.983 6.918
Ours (SS, DF, MA) 1.341 0.089 0.092 0.376 5.975

TABLE II
ABLATION STUDY OF DYNAMIC THRESHOLD µ OF DEFLOWSLAM

TRAINED AND TESTED ON VITUAL KITTI2 (VK) DATASET IN
SELF-SUPERVISED SETTING. µ = 0.5 ACHIEVES THE BEST RESULTS.

µ VK01 VK02 VK06 VK18 VK20

0.3 0.763 0.117 0.126 36.10 114.5
0.5 1.341 0.089 0.092 0.376 5.975
0.7 0.738 0.274 0.324 27.41 104.1

we follow DROID-SLAM [24], where each training example
consists of a 6-frame video sequence, and the average distance
between adjacent frames is between 8 pixels and 96 pixels.

2) SLAM System Details: For better comparison with
DROID-SLAM [24], we keep the same system setting as
DROID-SLAM in initialization, front-end, and backend. In
the initialization, DeFlowSLAM continuously receives new
incoming frames until 12 in total, constructs frame graphs for
them, and uses our dynamic update module to compute their
initial pose and inverse depth maps. In the frontend, as a new
frame comes, the system will use 3 nearest neighbor frames
and the new frame itself to create a temporary graph, where
the hidden state of the new frame such as pose and inversed
depth will be optimized. In the backend, the system will create
a new graph that contains every preserved keyframes. The edge
between keyframes is generated in a certain rule in order to
eliminate redundant edges. We use the dynamic update module
to optimize the whole graph for the final poses and depth. For
more specific details about the SLAM system, please refer to
DROID-SLAM [24].

3) Different Input Modes: Following DROID-SLAM [24],
our system also supports different kinds of input data such as
stereo images or RGB-D images, just to add crossed camera
edges for stereo or add the depth constraint for RGB-D,
compared with the monocular mode. The implementing details
can be found in DROID-SLAM [24].

IV. EXPERIMENTS

We first validate the effectiveness of our method in highly
dynamic scenarios, such as Virtual KITTI2 [28] in the ab-
lation study. Further, we train DeFlowSLAM from scratch
with the same strategy on a larger dataset, TartanAir [29],
and test the generalization of our method on different dy-
namic datasets, such as Virtual KITTI2 [28], KITTI [25],
and dynamic sequences of TUM-RGBD [71]. We also test

RGB Image

DROID-SLAM Confidence

DeFlowSLAM Confidence

Fig. 6. Confidence Comparison. We visualize the confidence of our
DeFlowSLAM vs. DROID-SLAM. Our method can exploit the dynamic
pixels to solve the camera pose. The darker red color means greater weight.
DeFlowSLAM also takes advantage of more information about the parked
vehicles on the roadside.

TABLE III
DYNAMIC SLAM RESULTS ON KITTI (K) & VIRTUAL KITTI2 (VK)

DATASETS WITH METRIC: ATE[M] TRAINED ON TARTANAIR
DATASET. WE ACHIEVE THE BEST RESULTS.

Method K09 K10 VK01 VK02 VK06 VK18 VK20

DSO [12] 28.1 24.0 - - - - -
DynaSLAM* [19] 41.91 7.519 27.830 X X X 2.807
DROID-SLAM* [24] 47.1 11.0 2.259 0.049 0.136 1.170 6.998

Ours 27.8 4.2 0.591 0.021 0.13 0.400 1.039

monocular or stereo datasets, such as static scenes of TUM-
RGBD [71] and EuRoc [72]. Following DROID-SLAM [24],
we use absolute trajectory error (ATE) [73] to evaluate the
accuracy of the estimated camera trajectories. In particular, we
compare DeFlowSLAM to DynaSLAM [19], etc in dynamic
scenes, demonstrating the effectiveness of our method. We also
compare DeFlowSLAM to DROID-SLAM in AR applications,
the results further prove the robustness of our pose estimation.

A. Datasets

Virtual KITTI2 [28] is derived from the KITTI tracking
benchmark [25] and consists of 5 sequences augmented with
various weather conditions (e.g. fog, rain) and different camera
configurations in terms of the camera orientations. In the abla-
tion study, we use the camera configurations with the default
camera orientation as the training set, the configurations with
15-degree as the validation set, and the ones 30-degree as the
test set.
TartanAir [29] is a challenging dataset that is collected in
photo-realistic simulation environments with the presence of



8

TABLE IV
DYNAMIC SLAM RESULTS ON TUM DYNAMIC SEQUENCES WITH METRIC: ATE[M]. THE BEST RESULTS ARE SHOWN IN BOLD. DEFLOWSLAM

ACHIEVES COMPETITIVE AND EVEN BEST PERFORMANCE. NOTE THAT DVO SLAM, ORB-SLAM2, AND POINTCORR USE THE RGB-D DATASET,
WHILE OUR METHOD AND DROID-SLAM ONLY USE THE MONOCULAR RGB DATASET.

Sequences Trans. RMSE of trajectory alignment [m]
DVO SLAM [74] ORB-SLAM2 [75] PointCorr [7] DROID-SLAM [24] Ours

slightly dynamic

fr2/desk-person 0.104 0.006 0.008 0.017 0.013
fr3/sitting-static 0.012 0.008 0.010 0.007 0.007
fr3/sitting-xyz 0.242 0.010 0.009 0.016 0.015
fr3/sitting-rpy 0.176 0.025 0.023 0.029 0.027

fr3/sitting-halfsphere 0.220 0.025 0.024 0.022 0.025

highly dynamic

fr3/walking-static 0.752 0.408 0.011 0.016 0.007
fr3/walking-xyz 1.383 0.722 0.087 0.019 0.018
fr3/walking-rpy 1.292 0.805 0.161 0.059 0.057

fr3/walking-halfsphere 1.014 0.723 0.035 0.312 0.42

TABLE V
MONOCULAR SLAM RESULTS ON TARTANAIR MONOCULAR BENCHMARK WITH METRIC: ATE[M]. BOLD STANDS FOR BEST RESULTS AND

UNDERLINED FOR THE SECOND BEST. * MEANS THE RESULTS ARE GENERATED BY RUNNING THE OFFICIAL PRETRAINED MODEL IN OUR ENVIRONMENT
TO ENSURE EVALUATION CONSISTENCY. X MEANS THE SYSTEM HAS FAILED HERE. - MEANS LACK OF RESULTS. WE ACHIEVE THE BEST RESULTS.

Monocular MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Avg

ORB-SLAM [10] 1.30 0.04 2.37 2.45 X X 21.47 2.73 -
DeepV2D [76] 6.15 2.12 4.54 3.89 2.71 11.55 5.53 3.76 5.03
TartanVO [77] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04 1.92
DROID-SLAM* [24] 0.04 0.69 0.03 0.02 3.73 0.62 0.38 0.07 0.70
Ours 0.63 0.06 0.02 0.01 2.80 0.20 0.31 0.45 0.56

TABLE VI
MONOCULAR SLAM RESULTS ON EUROC DATASET WITH METRIC: ATE[M]. † DENOTES VISUAL ODOMETRY METHODS. X MEANS THE SYSTEM

HAS FAILED HERE. - MEANS LACK OF RESULTS. WE ACHIEVE COMPARABLE RESULTS ON PAR WITH DROID-SLAM.

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

D
ee

p/
H

yb
. DeepFactors [2] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040

DeepV2D [76]† 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
DeepV2D (Tartan Air)† 1.614 1.492 1.635 1.775 1.013 0.717 0.695 1.483 0.839 1.052 0.591 1.173
TartanVO [77]† 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
D3VO + DSO [78]† - - 0.08 - 0.09 - - 0.11 - 0.05 0.19 -

C
la

ss
ic

al

ORB-SLAM [10] 0.071 0.067 0.071 0.082 0.060 0.015 0.020 X 0.021 0.018 X -
DSO [79]† 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
SVO [80]† 0.100 0.120 0.410 0.430 0.300 0.070 0.210 X 0.110 0.110 1.080 -
DSM [81] 0.039 0.036 0.055 0.057 0.067 0.095 0.059 0.076 0.056 0.057 0.784 0.126
ORB-SLAM3 [82] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 X -

DROID-SLAM* [24] 0.013 0.014 0.022 0.043 0.043 0.037 0.012 0.020 0.017 0.013 0.014 0.022
Ours 0.018 0.037 0.020 0.060 0.048 0.031 0.008 0.083 0.016 0.035 1.137 0.136

moving objects, changing light and various weather conditions.
We use the official train/val/test split [29] for SLAM, and
calculate ATE in all sequences.

KITTI [25] captures datasets in real-world traffic situations
and ranges from freeways over rural areas to inner-city scenes
with many static and dynamic objects, which is leveraged
to perform online benchmarks for stereo, optical flow, object
detection, and visual odometry [25].

TUM-RGBD [71] consists of notoriously difficult indoor
scene datasets captured with a handheld camera due to rolling
shutter artifacts, motion blur, and heavy rotation [24]. We use
the dynamic sequences to evaluate the effectiveness of De-
FlowSLAM in dynamic scenes and exploit the static sequences
in the monocular setting.

EuRoc [72] contains 11 sequences with significant illumina-
tion changes and strong camera motion, which is widely used
to evaluate SLAM systems.

B. Ablation Study

We conduct an ablation study to verify the effectiveness
of our dual-flow representation in dynamic scenes and further
explore the self-supervised training mechanism. We chose the
Virtual KITTI2 dataset [28] for the ablation study.
Framework Design. To remove the interference of dynamic
objects, an easy way to implement this is to add a module
to DROID-SLAM that removes dynamic objects, which is
considered a mask-removal approach. Instead, we use our
dual-flow representation to keep more pixels for solving the
pose, decomposing the static components even for regions of
dynamic objects. Fig. 6 shows that DeFlowSLAM can exploit
the dynamic pixels to solve the camera pose, compared with
DROID-SLAM [24]. Tab. I shows that the dual-flow repre-
sentation is better than the rough single-flow method. Notice
that SS means self-supervised, SM means semi-supervised, SF
means single flow, and DF means dual flow.
Supervision Policy. We explore the possibility of training
DeFlowSLAM in a self-supervised manner. Compared with
the supervised approach, which requires a large number of
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TABLE VII
MONOCULAR SLAM RESULTS ON TUM-RGBD DATASET WITH METRIC: ATE[M]. X MEANS THE SYSTEM HAS FAILED HERE. - MEANS LACK OF

RESULTS. WE ACHIEVE COMPARABLE RESULTS ON PAR WITH DROID-SLAM.

360 desk desk2 floor plant room rpy teddy xyz avg

ORB-SLAM2 [75] X 0.071 X 0.023 X X X X 0.010 -
ORB-SLAM3 [82] X 0.017 0.210 X 0.034 X X X 0.009 -

DeepTAM [83] 0.111 0.053 0.103 0.206 0.064 0.239 0.093 0.144 0.036 0.116
TartanVO [77] 0.178 0.125 0.122 0.349 0.297 0.333 0.049 0.339 0.062 0.206
DeepV2D [76] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepV2D (TartanAir) 0.182 0.652 0.633 0.579 0.582 0.776 0.053 0.602 0.150 0.468
DeepFactors [2] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

DROID-SLAM* [24] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038
Ours 0.159 0.016 0.030 0.169 0.048 0.538 0.021 0.039 0.009 0.114

TABLE VIII
STEREO SLAM RESULTS ON TARTANAIR STEREO BENCHMARK WITH METRIC: ATE[M]. X MEANS THE SYSTEM HAS FAILED HERE. - MEANS LACK

OF RESULTS. WE ACHIEVE COMPARABLE RESULTS ON PAR WITH DROID-SLAM.

Stereo SH000 SH001 SH002 SH003 SH004 SH005 SH006 SH007 Avg

ORB-SLAM2 [75] 0.05 6.67 X X X X 0.10 X -
TartanVO [77] 2.52 1.61 3.65 0.29 3.36 4.74 3.72 3.06 2.87
DROID-SLAM* [24] 0.44 0.08 0.13 0.20 0.16 3.29 0.38 0.18 0.61
Ours 0.14 0.10 0.13 0.08 0.09 7.60 0.03 0.02 1.02

TABLE IX
STEREO SLAM RESULTS ON EUROC DATASET WITH METRIC: ATE[M]. - MEANS LACK OF RESULTS. WE ACHIEVE COMPARABLE RESULTS ON PAR

WITH DROID-SLAM.

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

D3VO + DSO [78] - - 0.08 - 0.09 - - 0.11 - 0.05 - -
ORB-SLAM2 [75] 0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048 0.037 0.035 - -
VINS-Fusion [84] 0.540 0.460 0.330 0.780 0.500 0.550 0.230 - 0.230 0.200 - -
SVO [80] 0.040 0.070 0.270 0.170 0.120 0.040 0.040 0.070 0.050 0.090 0.790 0.159
ORB-SLAM3 [82] 0.029 0.019 0.024 0.085 0.052 0.035 0.025 0.061 0.041 0.028 0.521 0.084

DROID-SLAM* [24] 0.015 0.013 0.035 0.048 0.040 0.037 0.011 0.020 0.018 0.015 0.017 0.024
Ours 0.018 0.011 0.020 0.061 0.042 0.031 0.011 0.090 0.039 0.037 0.478 0.075

complicated loss functions and is difficult to adjust the ap-
propriate loss weights, and the semi-supervised approach,
which requires additional masks for dynamic objects, the self-
supervised approach achieves the transformation of different
loss functions, allowing a less restricted adaptation to new
scenarios and demonstrating better generalization ability. Tab. I
demonstrates that the self-supervised approach can achieve
comparable or better accuracy than the supervised approach.
Mask-Agg Setting. In self-supervised training, we introduce
the Mask-Agg technique to reduce the influence of error
matching of the pixels. Because the predicted dynamic masks
in self-supervised training are not converged in the early stage
of training, we only introduce Mask-Agg at the last 1/10
epochs. Tab. I demonstrates that Mask-Agg helps to improve
pose estimation, where MA means Mask-Agg.
Dynamic Threshold µ. In the self-supervised setting, we
perform an ablation study of dynamic threshold µ on the
Virtual KITTI2 (VK) dataset. Experiments demonstrate that
µ = 0.5 achieves better performance, as shown in Tab. II.

C. Generalization

After verifying the validity of our hypothesis, we trained
our DeFlowSLAM on TartanAir dataset [29] from scratch
and test our DeFlowSLAM on other popular SLAM datasets,
such as Virtual KITTI2 (VKITTI2) [28] and KITTI [25] for

TABLE X
MOTION SEGMENTATION. WE SHOW THE MOTION SEGMENTATION

RESULTS OF DEFLOWSLAM ON VIRTUAL KITTI2 DATASET.

Monocular VK01 VK02 VK06 VK18 VK20

Ours 0.538585 0.528356 0.562788 0.739282 0.654025

autonomous driving scenarios with dynamic objects, EuRoc
[72] for drones with strong motion and significant illumination
changes, and TUM RGB-D [71] for hand-held SLAM with
motion blur and heavy rotations. The results demonstrate that
our model generalizes well to different datasets, shown in
Fig. 5. Next, we show the effectiveness of DeFlowSLAM in
several settings.

D. Dynamic SLAM

We test the performance of the proposed DeFlowSLAM
on sequences 09 and 10 from the KITTI dataset [25] and
all sequences from the Virtual KITTI2 dataset [28]. Here we
provide an additional trajectory for this experiment. The ATE
results are shown in Table III. Compared with DynaSLAM
[19] which uses Mask-RCNN for the dynamic environments
and DROID-SLAM [24], our DeFlowSLAM is far more
accurate and robust in dynamic scenes. We also perform
evaluations on TUM RGB-D dynamic sequences with different
dynamic proportions and the comparison results in Tab. IV
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Fig. 7. Comparison Trajectory Results of Our Method with DROID-
SLAM on VKITTI2 Sequences 01 (Top), 02 (Bottom-Left), and 20
(Bottom-right). In these dynamic sequences, our method performs better than
DROID-SLAM, with better trajectory estimation results.

Fig. 8. Trajectory Comparison between Our Method and DROID-SLAM.
In KITTI sequences 09 (Left) and 10 (Right), our trajectories are closer to
the ground truth.

show that DeFlowSLAM achieves competitive and even best
performance. Note that DVO SLAM [74], ORB-SLAM2 [75],
and PointCorr [7] use the RGB-D dataset, while our method
and DROID-SLAM [24] only use the monocular RGB dataset.

E. Monocular SLAM

In the monocular setting, we test our trained DeFlowSLAM
on TartanAir test sets, EuRoC, and TUM RGB-D dataset.
As shown in Tab. V, DeFlowSLAM achieves the best re-
sults. Tab. VI and Tab. VII show that our method achieves
comparable even better results than the SOTA supervised
method, DROID-SLAM [24] in most sequences. The results
also demonstrate our DeFlowSLAM is more robust than the
classical SLAM algorithms as they failed in many sequences.
Specifically, we achieve an average ATE of 0.136m on EuRoC
dataset in the monocular setting, and an average ATE of
0.114m on TUM-RGBD static sequences, outperforming most
supervised methods.

F. Stereo SLAM

Under stereo setup, our trained DeFlowSLAM is also tested
on TartanAir test dataset and EuRoC stereo dataset. Tab. VIII
illustrates DeFlowSLAM achieves comparable results on par
with DROID-SLAM [24], with an average ATE of 1.02m on
the TartanAir stereo test dataset, outperforming TartanVO [85].
Tab. IX shows that DeFlowSLAM exhibits comparable results
on the EuRoc dataset in the stereo setting with DROID-
SLAM [24], outperforming most supervised methods and
traditional SLAM, ORB-SLAM3 [82]. In most sequences,
our method is on the same order of magnitude as DROID-
SLAM [24], which shows the effectiveness of our method.

G. AR Applications

We conduct extensive experiments on AR applications to
demonstrate the robustness of DeFlowSLAM. As shown in
Fig. 9, we augment the original video with a virtual tree, a
car, and a street lamp. Our DeFlowSLAM can deal with the
dynamic objects in the scene very well while DROID-SLAM
exhibits significant drifts (the red boxes).

H. Motion Segmentation

Although our method focuses on the SLAM system, our
dual-flow representation can be well applied to motion seg-
mentation. We simply set a threshold value (such as µ = 0.5)
for motion and visualize the pixel points of the dynamic
field larger than this threshold to obtain the result of motion
segmentation, as shown in Fig. 10 and Tab. X.

V. DISCUSSION AND LIMITATIONS

Although our system is versatile to many SLAM settings
and is more robust to the challenges of dynamic scenes,
it can be further improved in the following directions. De-
FlowSLAM performs slightly weaker in some scenarios than
DROID-SLAM, probably because we use a certain fixed dy-
namic threshold. We can explore dynamic threshold estimation
methods for the challenges of different scenarios. As with
droid-SLAM, we have high memory requirements for longer
sequences and larger scenes, and our DeFlowSLAM system
needs to run in segments. A lightweight and efficient SLAM
system is a potential research direction. For some loop closure
sequences, we can add loop closure constraints to reduce
the drift. Our system focuses more on solving the camera
pose, and the depth and optical flow obtained are only 1/8
of the original image size, which is not ideal for tasks like
depth estimation and optical flow estimation. An efficient and
versatile SLAM system is worthwhile researching. We can also
explore dynamic object reconstruction with dynamic dense
SLAM.

VI. CONCLUSIONS

We present a novel dual-flow representation that decom-
poses the optical flow into a static flow field caused by the
camera poses and a dynamic field caused by the dynamic
objects’ motion. We present a dynamic update module with
dual-flow representation to compose the full SLAM system,
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Fig. 9. AR Application. DeFlowSLAM deals with the dynamic objects in the scene very well while DROID-SLAM exhibits significant drifts (the red
boxes). We augment the original video with a virtual tree, a car, and a street lamp. From left to right and from top to down: Ground-Truth, DeFlowSLAM,
DROID-SLAM, Original Image.

Fig. 10. Motion Segmentation. From left to right: Ground-Truth dynamic
mask, Predicted dynamic mask larger than the dynamic threshold µ = 0.5.

DeFlowSLAM. We explore a self-supervised method to train
our dual-flow-based dynamic dense SLAM system, which
outperforms DROID-SLAM in highly dynamic scenes and
achieves comparable performance in static and slightly dy-
namic scenes.
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