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Input Operator Output

h× w × k Conv2d 1× 1, ReLU6 h× w × (tk)
h× w × tk dwise s=s 3× 3, ReLU6 h

s × w
s × (tk)

h
s × w

s × tk Conv2d 1× 1, D Linear h
s × w

s × k′

Table 1. The Structure of Bottleneck. Bottleneck block trans-
forming from k to k′ channels, with stride s, and expansion factor
t. Please refer to MobileNetV2 [10] for more details.

1. Method Details

1.1. The Architecture of the FPN-Lite Network

This section introduces the FPN-Lite network, which is
based on MobileNetV2 [10] as the encoder. Figure 1 illus-
trates the detailed structure of the network, which comprises
a downsample path (left side) and an upsample path (right
side). The downsample path adopts the standard architec-
ture of a convolutional network, but utilizes Bottleneck lay-
ers from MobileNetV2 to extract feature maps efficiently.
The upsample path also follows a conventional convolu-
tional architecture, but fuses features from different levels
of the downsample path with skip connections. The Bottle-
neck layers are applied again to refine features. The final
output consists of orange blocks that capture multi-scale in-
formation. Table 1 shows the specific configuration of each
Bottleneck layer.

1.2. The Calculation of Statistical Information

To enhance the performance of our model, we incorpo-
rate statistical information with deep features as the input
of our boundary prediction module. The statistical infor-
mation is obtained by extracting the contour RGB map Ick
from a process similar to that used for the contour fea-
ture map Fc

k. Specifically, we fix the length of each cor-
respondence line and sample discrete values of r̄ from the
set {−m, . . . , 0, . . . ,m}. This yields a 2D point set li(r̄),
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which is then used to extract the contour RGB map Ick by ap-
plying grid sample from PyTorch. The location (r̄+m, i)
corresponds to the RGB value Ik(li(r̄)). Based on each
pixel on the correspondence line and its corresponding RGB
value yi(r̄) = Ik(li(r̄)), we calculate pixel-wise posteriors
using the following formula:

pji(r̄) =
p(yi(r̄)|mj)

p(yi(r̄)|mf ) + p(yi(r̄)|mb)
, (1)

where j ∈ {f, b}, and mf and mb represent the RGB color
distributions for the foreground and background regions, re-
spectively. The color probability distributions p(y|mf ) and
p(y|mb) are estimated by color histograms. We discretize
the RGB color space into 32 equidistant bins along each
dimension, giving a total of 32768 values. The statistical
foreground probability map is calculated as follows:

FGc
k(r̄ +m, i) = pfi(r̄), (2)

where r̄ ∈ {−m, . . . , 0, . . . ,m}.
Following RBGT [11], we first compute the statistical

probability of the 2D point li(r̄) being the boundary of the
ith correspondence line can be calculate as follows:

p(Di|r̄) =
r̄+w∏

r=r̄−w

(hf (r−r̄)pfi(r)+hb(r−r̄)pbi(r)), (3)

where w is used to filter the border range, and hf and hb are
the step functions:

hf (x) =
1

2
− αhsign(x),

hb(x) =
1

2
+ αhsign(x),

(4)

where we set αh to 0.36 and sign operation is then defined
as:

sign(x) =

 1, x > 0
0, x = 0
−1, x < 0

(5)

Finally, the statistical boundary probability map is calcu-
lated as:

B̃k(r̄ +m− w, i) = p(Di|r̄), (6)

where r̄ ∈ {−(m− w), . . . , 0, . . . ,m− w}.
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Figure 1. The Architecture of the FPN-Lite Network. Each colorful block corresponds to a multi-channel feature map with a specific
number of channels and sizes, which are indicated on the edge of each block. The arrows show the different operations performed on the
feature maps, such as Conv2d, ConvTranspose2d, Bottleneck or Concat. We use 1 × 1 Conv2d for the orange blocks, which control the
output dimension, to generate the final output feature maps that capture multi-scale information from different levels of the network.

1.3. The Calculation of Derivatives

The Derivation of ∂di

∂Xcam
ci

During pose optimization, we

need to calculate derivative of the full likelihood p(D|Pk)
with respect to the pose Pk = [Rk, tk]. We first calculate
the projected difference di using following formula:

di = n⊤
i (π(RkXci + tk)− ci)

= n⊤
i (π(X

cam
ci )− ci)

, (7)

where π is a pinhole camera projection function

π(X) =

[
X
Z fx + px
Y
Z fy + py

]
. (8)

Then the first-order derivative of di with respect to Xcam
ci is

calculated as:

∂di
∂Xcam

ci

=
[
nxi

nyi

]  1
Zcam

ci

fx 0 − Xcam
ci

(Zcam
ci

)2 fx

0 1
Zcam

ci

fy − Y cam
ci

(Zcam
ci

)2 fy


=

1

(Zcam
ci )2

[nxi
fxZ

cam
ci nyi

fyZ
cam
ci

− nxi
fxX

cam
ci − nyi

fyY
cam
ci ].

(9)

The Derivation of
∂Xcam

ci

∂θ We add a perturbation to the
transformation:

Xcam
ci = Rk(∆RXci +∆t) + tk. (10)

Since the pose Pk can be represented by a 6-DoF variation
θ, the first order derivative of the 3D point Xcam

ci with re-
spect to the translation is calculated as

∂Xcam
ci

∂θt

∣∣∣
θt=0

=
∂Xcam

ci

∂∆t
= Rk, (11)

Additionally, the first order derivative with respect to each
degree of freedom of the rotation is defined as:

∂Xcam
ci

∂θr
x

∣∣∣
θr
x=0

= lim
h→0

Rk exp (h[1x]×)Xci −RkXci

h

≈ lim
h→0

Rk(E3 + h[1x]×)Xci −RkXci

h

=Rk[1x]×Xci .

(12)

Similarly,

∂Xcam
ci

∂θr
y

∣∣∣
θr
y=0

=Rk[1y]×Xci ,

∂Xcam
ci

∂θr
z

∣∣∣
θr
z=0

=Rk[1z]×Xci ,

(13)

where []× is the skew-symmetric matrix, and 1x, 1y and 1z

are defined as:

1x =

10
0

 ,1y =

01
0

 ,1z =

00
1

 , (14)

Therefore, the first order derivative of the 3D point Xcam
ci

with respect to the 6-DoF pose is calculated as:

∂Xcam
ci

∂θ

∣∣∣
θ=0

= Rk[−[Xci ]× E3], (15)

where E3 is the 3× 3 identity matrix.

2. Experiment Details
2.1. Training Details

We trained our model on six datasets from the BOP chal-
lenge [5]: IC-BIN [1], T-LESS [3], TUD-L [4], LM [2],
YCB-V [16], and RU-APC [9]. For training, we selected
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Tjaden et al. [15] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
Zhong et al. [17] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
Li et al. [8] 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 85.8
Huang et al. [7] 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 86.9
Sun et al. [13] 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 88.1
Huang et al. [6] 94.6 49.4 99.5 91.0 93.7 96.0 97.8 96.6 90.2 98.2 93.4 90.3 64.4 94.0 79.0 98.8 92.9 99.8 89.9
RBGT [11] 96.4 53.2 98.8 93.9 93.0 92.7 99.7 97.1 92.5 92.5 93.7 88.5 70.0 92.1 78.8 95.5 92.5 99.6 90.0
SRT3D [12] 98.8 65.1 99.6 96.0 98.0 96.5 100 98.4 94.1 96.9 98.0 95.3 79.3 96.0 90.3 97.4 96.2 99.8 94.2
LDT3D [14] 99.8 67.1 100 97.8 97.3 93.7 100 99.4 97.4 97.6 99.3 96.9 84.7 97.7 93.4 96.7 95.4 100 95.2
DeepAC 98.9 71.5 99.4 94.3 98.2 97.6 99.6 98.1 93.0 98.0 95.5 98.1 93.3 97.6 94.3 96.8 98.5 99.4 95.6
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Tjaden et al. [15] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
Zhong et al. [17] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
Li et al. [8] 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 86.7
Huang et al. [7] 91.8 42.3 98.9 89.9 91.3 87.8 97.6 94.5 84.5 98.1 91.9 86.7 66.2 90.9 73.2 97.1 89.2 99.6 87.3
Sun et al. [13] 93.8 55.9 99.6 85.6 97.7 93.7 97.7 96.5 78.3 98.6 91.0 91.6 72.1 90.7 63.0 98.9 94.4 100 88.8
Huang et al. [6] 94.3 48.3 99.5 90.1 94.6 96.1 97.9 97.3 90.9 99.1 92.9 91.5 72.6 94.7 80.0 98.3 95.2 99.8 90.7
RBGT [11] 96.5 54.6 99.1 93.9 93.1 94.7 99.5 97.0 93.0 93.4 93.3 92.6 74.9 91.0 79.2 95.6 89.8 99.5 90.6
SRT3D [12] 98.2 65.2 99.2 95.6 97.5 98.1 100 98.5 94.2 97.5 97.9 96.9 86.1 95.2 89.3 97.0 95.9 99.9 94.6
LDT3D [14] 100 64.5 99.8 97.9 97.9 94.0 100 99.5 97.0 98.8 99.3 97.6 87.5 97.4 92.4 97.1 96.4 100 95.4
DeepAC 98.9 72.1 99.8 93.6 98.6 97.6 99.9 98.1 92.6 98.4 94.6 98.2 92.2 96.8 94.9 97.3 98.6 99.2 95.6
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Tjaden et al. [15] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
Zhong et al. [17] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
Li et al. [8] 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 71.4
Huang et al. [7] 89.0 60.0 89.5 90.2 68.9 38.3 95.9 72.8 20.1 85.5 92.2 26.8 15.8 66.2 52.2 58.3 65.1 98.4 65.0
Sun et al. [13] 92.5 56.2 98.0 85.1 91.7 79.0 97.7 86.2 40.1 96.6 90.8 70.2 50.9 84.3 49.9 91.2 89.4 99.4 80.5
Huang et al. [6] 91.0 49.1 95.6 91.0 76.3 54.1 97.1 73.7 27.3 92.8 95.3 30.2 7.8 73.9 56.8 71.4 70.8 98.7 69.6
RBGT [11] 91.9 53.3 90.2 92.6 67.9 59.3 98.4 80.6 43.5 78.1 92.5 44.0 31.3 72.3 62.0 59.9 71.7 98.3 71.5
SRT3D [12] 96.9 61.9 95.4 95.7 84.5 73.9 99.9 90.3 62.2 87.8 97.6 62.2 43.4 84.3 78.2 73.3 83.1 99.7 81.7
LDT3D [14] 99.3 62.0 95.8 97.7 90.4 68.6 99.9 91.3 54.2 95.4 99.0 64.8 51.6 89.2 75.2 74.7 87.6 100 83.2
DeepAC 94.8 60.6 97.7 93.2 88.8 90.6 99.3 92.6 72.1 93.9 92.3 83.9 70.4 91.2 83.4 91.2 89.5 98.4 88.0
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Tjaden et al. [15] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
Zhong et al. [17] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 78.4
Li et al. [8] 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 80.3
Huang et al. [7] 86.2 46.3 97.8 87.5 86.5 86.3 95.7 90.7 78.8 96.5 86.0 80.6 59.9 86.8 69.6 93.3 81.8 95.8 83.6
Sun et al. [13] 91.3 56.7 97.8 82.0 92.8 89.9 96.6 92.2 71.8 97.0 85.0 84.6 66.9 87.7 56.1 95.1 89.8 98.2 85.1
Huang et al. [6] 92.5 51.5 99.2 90.7 92.1 92.2 97.7 94.2 89.8 98.4 91.3 90.7 66.3 91.7 75.3 95.9 92.1 99.0 88.9
RBGT [11] 90.8 51.7 95.9 88.5 88.0 90.5 96.9 91.6 87.1 90.3 86.4 85.6 65.8 87.0 72.7 91.2 84.0 97.0 85.6
SRT3D [12] 96.5 66.8 99.0 95.8 95.0 95.9 100 97.6 92.2 96.6 95.0 94.4 79.0 94.7 89.8 95.7 93.6 99.6 93.2
LDT3D [14] 98.7 68.4 99.9 97.5 98.3 93.0 99.9 99.4 95.1 97.9 99.1 96.9 85.5 97.0 90.3 96.3 95.1 100 94.9
DeepAC 96.0 76.1 99.4 91.8 97.8 95.3 98.6 96.7 88.6 97.6 93.5 95.9 88.6 95.1 91.0 95.2 96.9 98.0 94.0

Table 2. Comparison to optimization-based methods on the RBOT benchmark. We report the tracking successful rate below the
threshold of 5cm− 5◦.

synthetic slices of obj1 from IC-BIN, obj1,...,8 from T-
LESS, obj1,2 from TUD-L, obj1,...,10 from LM, obj1,...,15
from YCB-V and obj1,...,8 from RU-APC. We used other
objects and their associated slices, both synthetic and real,
for validation. During each epoch of training, we randomly
sampled 1500 images from each slice, resulting in a total
of 69,120 samples per epoch. Since not all of these slices
were continuous, we generated an initial pose Pk by ran-

domly offsetting the rotation by 5-25 degrees and the trans-
lation by 5-25 centimeters from the ground truth pose Pgt

k .
To improve the robustness of DeepAC, we applied image
augmentation techniques such as adding Gaussian noise and
changing the background. We trained DeepAC for a total of
5 epochs using a batch size of 48. The initial learning rate
was set to 1 × 10−3 with a linear learning rate warm-up in
1 epoch, starting from 0.25 of the initial learning rate. The



training process took 3 hours using 4 Tesla V100 GPUs.

2.2. More Results on the RBOT dataset

Due to the space limitation, we only include the average
results of the RBOT dataset in the paper. Table 2 presents
the results of all objects in RBOT.

3. Real-world Examples
We implemented deepAC on mobile devices (iPhone 11)

and developed a tracking application. The released version
runs at least 25fps. The initial pose is set interactively by
aligning the current frame with a standard pose. The user
only needs to specify a coarse initial pose, and then our al-
gorithm can converge to the correct pose.

We evaluated our method in real scenes with various
challenges such as fast motion, heavy occlusion, and dark
light environment. Please refer to the accompanying video
for the performance.
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