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A. Unsupervised Point Cloud Segmentation and
Detection Pipeline

Given an SfM point cloud with point-wisely aggregated
DINO [2] features, we segment the foreground object and
generate its compact 3D bounding box with the following
pipeline based on Normalized Cut (NCut).

A.1. Preprocessing

The SfM point clouds built with LoFTR [12] matches
are dense but noisy and usually contain too many points for
NCut to process. Thus, we preprocess the SfM point clouds
to filter out noisy 3D points and simplify the point clouds.

First, we filter out points with too short SfM feature tracks
or large reprojection errors. We found that most of the SfM
track lengths follow Gaussian distributions and the repro-
jection errors follow Pareto distributions, thus we set the
minimum track length as the mean track length plus 3 stan-
dard deviations, and set the maximum reprojection error as
the median. Then, we apply statistical outlier removal upon
the point cloud. The global statistic of local distances is com-
puted with 30 nearest neighbors, and the maximum distance
is set to the mean plus 0.5 standard deviations.

To simplify the point cloud, we run voxel-based down-
sampling with a resolution of 128. If the videos are object-
centric, we can optionally filter out 3D points lying behind
more than 10% of all camera planes, since such points are
mostly background points. We do not filter 3D points based
on camera frustums since objects are only partially visible
in most of the frames. The foreground object usually only
occupies a small region of the entire scene covered by an
SfM point cloud; the ratio between the number of foreground
and background points is very small and NCut might fail
to find a balanced bipartition in such an extreme case. To
increase the robustness, we segment the ground plane from
an SfM point cloud with RANSAC-based plane fitting. All
3D planes are recursively segmented from the SfM point
cloud, and we take the largest plane vertical to the gravity
direction as the ground plane. The segmented ground plane
is rejected if there are non-negligible numbers of points dis-
tributed on both sides of it. If a ground plane is segmented

successfully, we downsample ground plane points with far-
thest point sampling (FPS) such that the numbers of ground
points and non-ground points are similar, which facilitates
NCut solving. Finally, to limit the time and memory cost of
solving NCut, we downsample the preprocessed point cloud
with FPS to keep a maximum of 10,000 points.

A.2. Graph construction and cue combination

Applying NCut on the DINO point cloud facilitates global
reasoning in 3D for salient object decomposition. Moreover,
there is another advantage to lifting the problem to 3D, as we
can explicitly utilize the spatial distances between 3D points,
to further disambiguate points sharing similar DINO features
with their spatial proximity. We define the final weight matrix
as the multiplication of the grouped cosine similarity matrix
as described in Sec. 4.1 and a spatial proximity matrix:

Seuc (vi, vj) = max

(
exp

(
−γ

∥pi − pj∥2

σiσj

)−1

, θeuc

)
,

(1)
where vi and vj denote two 3D points, pi and pj denote
their spatial positions, σi and σj are point-wise local scaling
factors [16] which are standard deviations computed within
the K-nearest neighbors of each point, the computed spa-
tial affinities are further thresholded with θeuc to avoid the
structure of the graph dominated by the spatial affinity term.

Following TokenCut [13], the grouped cosine similarities
are binarized:

S*
′
(vi, vj) =

{
1 if S* (vi, vj) ≥ τ

ϵ otherwise,
(2)

where S* is grouped cosine similarity, τ is set to 0.2 and ϵ
equals 1e-5. The final weight matrix is defined as

w (vi, vj) = S*
′
(vi, vj) · Seuc (vi, vj) . (3)

A.3. Solving Normalized Cut

We perform NCut upon the above-defined graph by
solving a generalized eigenvalue problem. The second-
smallest eigenvector is found using a matrix-free LOBPCG
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Figure 1. Manually segmented ground truth meshes of BlendedMVS [14]. We manipulate original meshes with background and only keep
the foreground models for evaluating 3D reconstruction and multi-view segmentation.

method [4, 11]. We extract the discrete partition from the
continuous one indicated by the second-smallest eigenvector
with an evenly spaced search over possible splitting points,
and the one minimizing the NCut criterion is taken as the
final splitting point of bipartition.

A.4. Salient object segmentation and detection

Given a bipartition of the graph, we need to deter-
mine which partition corresponds to the foreground. To-
kenCut [13] assumes that the foreground is less connected
to the entire graph and thus can be identified as the partition
containing the largest absolute value of the eigenvector. We
find this strategy applies to SfM point clouds as well.

The extracted foreground point cloud sometimes still con-
tains several floating 3D points far away from the salient ob-
ject. We optionally perform euclidean clustering and take the
largest connected component as the final foreground point
cloud. We then generate a compact 3D bounding box for
the foreground object, which is achieved by taking the axis-
aligned bounding box (AABB) in an object-centric space.
First, we transform the point cloud to an object-centric space.
If the gravity direction is not known, we align the up di-
rection of the world space with the normal direction of the
estimated ground plane. Then, we perform principal com-
ponent analysis (PCA) on the foreground point cloud and
reorient the world frame to the principal directions of the
foreground point cloud with the up direction fixed. Then,
we extract the AABB of the foreground point cloud in the
object-centric space and optionally extend the AABB to the
estimated ground plane. The above-described pipeline leads
to satisfactory segmentation and bounding boxes for most
of the videos in the CO3D [10] dataset, combined with the
noise-aware pseudo-ground-truth definition in Fig. 3 of the
main text, is sufficient for automatically generating massive
training data for our salient object segmentation Transformer.

B. Unbounded Scene Modeling
We use the scene contraction function proposed in mip-

NeRF 360 [1] to represent unbounded scenes:

contract(x) =

{
x if ∥x∥ ≤ 1(
2− 1

∥x∥

)
x

∥x∥ if ∥x∥ > 1.
(4)

We use the above function with L∞ norm when using grid-
based scene representations to accelerate training and use
L2 norm when using MLP-based fields. However, different
from mip-NeRF 360, which focuses on the modeling of the
entire unbounded scene, we pay more attention to the recon-
struction quality of foreground objects. Thus we leverage
different feature grids and MLPs to model the foreground
and background regions separately. We keep the foreground
region uncontracted and apply linear contraction to the inte-
rior of the background region and non-linear contraction to
the exterior of the background region:

contract(x) =


x if ∥x∥ ≤ 1

g(x) if 1 < ∥x∥ ≤ α(
2− 1

∥g(x)∥

)
g(x)

∥g(x)∥ if ∥x∥ > α,

(5)
where g(x) = x

α which linearly contract the space. We
rescale the scene such that the foreground bounding box fits
into a unit sphere (for L2 norm) or a unit box (for L∞ norm),
which left the foreground modeling in Euclidean space. The
∥x∥ > 1 region is recognized as background and is parame-
terized by separate fields. We find that α = 5.0 works well
across object instances and one can further tune α based on
the relative size of the foreground and background regions.
We name the contraction function in Eq. (5) foreground-
object-aware scene contraction. This contraction function
facilitates independent scene parameterization settings for
the foreground and background regions.



C. Evaluation Details
C.1. Coarse decomposition

Our coarse decomposition aims to segment the salient
foreground object and generate its compact 3D bounding
box from an SfM point cloud. We evaluate all methods based
on the produced 3D bounding boxes. We do not evaluate the
3D segmentation directly since SfM point clouds are noisy,
containing points not lying on any surface and thus whose
ground truth segmentation is hard to define and generate.

We label the ground truth 3D bounding boxes for
CO3D [10], BlendedMVS [14] and DTU [5] in a semi-
automated pipeline. First, we preprocess the dataset to get
geometric models of the foreground object. For the CO3D
dataset, we filter the provided MVS point cloud and only
keep the foreground points. For the BlendedMVS dataset,
we manually manipulate the ground truth mesh to remove
all background vertices and faces as shown in Fig. 1. For the
DTU dataset, we filter the ground truth point cloud with Vi-
sual Hull based on object masks annotated in [15]. Then, the
bounding boxes are inferred based on a plane-aligned prin-
cipal component analysis of foreground geometries, in the
same way as described in Appendix A. Finally, we manually
inspect all generated bounding boxes in their correspond-
ing SfM point clouds and discard incorrect ones, which are
mostly caused by partial or noisy foreground geometries.

To evaluate all methods fairly, a shared 3D bounding
boxes generation pipeline is applied to all SfM point cloud
segmentation results. We transform all world spaces into
object-centric spaces defined by the ground truth bound-
ing boxes. Then we apply euclidean clustering and take the
largest connected component as the foreground point cloud.
This prevents the bounding box from being affected by occa-
sional floating segmentation noises. Finally, the axis-aligned
bounding boxes are taken upon the foreground point clouds.
Since SfM point clouds produced with LoFTR matches con-
tain complete foreground geometries, we can also generate
the bounding boxes in arbitrary world frames by reorienting
the world frame to the principal directions of the segmented
foreground point cloud with the up direction aligned with
gravity. We found these two schemes led to similar results
for our methods. We report average precisions (AP) of 3D
IoU with thresholds of 0.5 and 0.7. We use the 3D IoU
implemented in PyTorch3D [9].

C.2. Fine decomposition

Multi-view segmentation. Qualities of multi-view seg-
mentation reflect both the performance of 3D reconstruction
and foreground object decomposition. We evaluate segmenta-
tion masks with Mask IoUs and Boundary IoUs [3] averaged
over multiple views. The Mask IoU is defined as

Mask-IoU (G,P ) =
|G ∩ P |
|G ∪ P |

, (6)

where G is the ground truth binary mask and P is the pre-
dicted binary mask. The Boundary IoU is defined as

Boundary-IoU (G,P,Gd, Pd) =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )|

,

(7)
where Gd and Pd are the set of values in the boundary region
of the binary masks. The Boundary IoU focuses more on
boundary quality, which better reflects the meticulousness
of our produced masks. Please refer to [3] for more details.

3D reconstruction. We evaluate the quality of 3D recon-
struction with Chamfer l2 distance. BlendedMVS [14] pro-
vides high-fidelity ground truth meshes reconstructed with
a commercial 3D reconstruction tool. However, most of
the meshes contain both the foreground object and its sur-
roundings. We manually segment the foreground mesh of
5 objects for evaluation of 3D reconstruction; the original
and foreground-only meshes are shown in Fig. 1. We ren-
der multi-view object masks with foreground-only meshes.
When evaluating baselines that jointly reconstruct the fore-
ground object and its surroundings, we remove all points
from their meshes lying outside the visual hull defined by the
rendered multi-view masks. We compute Chamfer distance
by sampling 100,000 points from the ground truth and the
predicted meshes.

D. More Ablation Studies
Ablations on the grouped cosine similarity. When seg-
menting the foreground object with our NCut-based pipeline,
we find that using the proposed grouped cosine similarity
(S* in Eq. (3)) can better segment objects with complex
structures and appearances than using cosine similarity on
flattened features (SC). We show quantitative results in Ta-
ble 2.

CO3D
AP@0.5 AP@0.7

Ours NCut + Grouped Cosine Similarity 0.867 0.306
Ours NCut + Cosine Similarity 0.673 0.235

Table 2. Ablation results of the grouped cosine similarity.

Ablations on regularizations enforcing fine decomposi-
tion. We propose several regularization terms to enforce
the decomposition of foreground and background when train-
ing our implicit neural scene representation, including ad-
ditional constraints directly applied on the SDF with the
segmented foreground point cloud and the estimated ground
plane, and a Beta(0.5, 0.5) prior on object masks rendered
with our foreground reconstruction. Depending on the mod-
eling difficulties of the foreground object and its surround-
ings, we find different video sequences rely more or less
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BlendedMVS Gundam

Figure 2. Ablation studies on different regularization terms and their effects on final decomposition results. We visualize renderings of the
foreground SDF-based radiance field including colors, segmentation and normals. We use MLP-based fields without feature grids in all
experiments.

on different regularizations. But overall, these three regular-
izations combined lead to robust results among most of the
sequences.

We show the effectiveness of each term with additional ab-
lation studies on two objects, the Gundam action figure from
BlendedMVS and a chair from CO3D. Both of them contain
complex foreground geometries and cluttered backgrounds.
We use MLP-based scene representations without multireso-
lution hash encodings [8] in this ablation. As shown in Fig. 2,
when different networks are used for modeling different spa-
tial partitions and no regularization is used (No Reg.), the
ground planes are modeled by the foreground SDF network
in both cases. When the Beta(0.5, 0.5) prior regularization
on rendered object masks is disabled (No Mask Prior), the
Gundam sequence has part of its ground plane modeled by
the foreground SDF network while the chair is decomposed

successfully. We attribute this to the complex textures on
the ground plane in the Gundam sequence, which is hard to
model with the NeRF covering the region around the ground
plane. In contrast, the ground plane in the chair sequence
has simpler textures and is easily modeled by a tiny NeRF.
When the ground plane constraint is disabled (No Plane),
both of the two sequences have degenerate decompositions.
The Gundam sequence is less sensitive to the foreground
point cloud constraint (No Foreground), but the legs of the
chair sequence fail to be modeled by the foreground SDF
and the thin structures of its back are blurry and noisy. When
using scene representations with multiresolution hash encod-
ings, we find the decomposition results more robust to the
combination of different regularization terms.
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Figure 3. More qualitative results on 3D reconstruction and multi-view foreground-only renderings. We show the reconstruction results of
MLP-based fields without utilizing feature grids.



E. More Implementation Details
Point cloud Transformer. Our SfM point cloud segmen-
tation Transformer consists of 2 Transformer encoder layers
with linear attentions [6]. The 384-d point-wise DINO fea-
tures are added with positional encodings as inputs. We use
discrete sinusoidal positional encodings defined on a 1283

voxel grid and interpolate it with continuous 3D positions.
We found discrete learned positional encoding and contin-
uous sinusoidal encoding lead to similar results, we use
discrete sinusoidal encoding for its simplicity. Following the
architecture of ViT-Small, we use 6 attention heads. In con-
trast, we use a smaller hidden dimension of only 96 instead
of 384. We train our Transformer with Adam optimizer [7]
and a learning rate of 1e-3 for 20 epochs. We use gradient
clipping with a maximum norm of 0.5 to avoid the train-
ing being affected by extreme outliers caused by incorrect
pseudo-ground-truths.

Timing of coarse decomposition. We provide timings of
our unsupervised point cloud segmentation pipeline with
NCut and our Transformer-based segmentation in Table 3.
We only report the timings of the segmentation, excluding
preprocessing of building DINO point clouds and postpro-
cessing of generating object boundings boxes.

Method Timing (ms)

Downsampled Point Cloud
(10k points)

Original Point Cloud
(170k points)

NCut 10647.7 —
Transformer 5.8 83.9

Table 3. Timing of NCut and Transformer based segmentation on
the downsampled and original SfM point clouds. All results are
averaged over 100 runs. It is infeasible to apply NCut on the original
point cloud due to memory limitations.

F. More Qualitative Results
We show more qualitative results on 3D reconstruction

and multi-view segmentation in Fig. 3. The reconstructed
meshes and multi-view renderings of foreground objects
are free of backgrounds, illustrating the effectiveness of our
coarse-to-fine salient object decomposition and reconstruc-
tion pipeline.
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