
GURecon: Learning Detailed 3D Geometric Uncertainties
for Neural Surface Reconstruction

-Supplementary Material-

In this supplementary material, we provide more details
of our GURecon framework, including 1) detailed network
architecture of GURecon (Sec. A); 2) modifications to other
compared baselines (Sec. B); 3) more experiment results
(Sec. C); 4) details of incremental reconstruction (Sec. D).
Additionally, we provide a video supplementary material to
summarize our method and demonstrate the results.

A Model Architecture
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Figure A. The network architecture of GURecon. In addi-
tion to the SDF network and the Color network proposed in
NeuS (Wang et al. 2021), we introduce decoupled fields to
mitigate the interference of view-dependent factors, and an
uncertainty field to predict the geometric uncertainty.

The detailed architecture of GURecon is depicted in Fig.A.
Taking NeuS (Wang et al. 2021) as a representative in neural
surface representations, we establish an SDF network and a
Color network to learn the neural geometric representation
and radiance field of the scene based on the volume ren-
dering formulation. Note that the representation of the SDF
network can be substituted with various architectures such as
MLP (Wang et al. 2021; Yariv et al. 2021), voxel grid (Zhao
et al. 2022; Li et al. 2023; Wu et al. 2022) and tetrahedral
lattice (Rosu and Behnke 2023), as our method serves as a
plug-and-play module applicable to diverse neural surface
reconstructions. In our paper, we use a multi-resolution hash
feature grid (Müller et al. 2022) for memory and time effi-
ciency. Specifically, the feature grid adopts a coarse-to-fine
structure consisting of 16 levels, with each level growing
exponentially from the lowest resolution of 323 to the highest
resolution of 20483. At each level, the grid is organized and
indexed through a hash table, where each hash entry has a
feature with a channel size of 2. Towards the end of the SDF
network, a two-layer MLP with 128 hidden units in each
layer is incorporated. Following NeuS (Wang et al. 2021),
we initialize the SDF as a sphere and train the network to
produce both a 256-dimensional feature and an SDF value

for the input spatial position. The Color Network encodes
the appearance in radiance fields and consists of two-layer
MLPs, each with 64 hidden units.

Furthermore, to disentangle appearance components for
better modeling view-dependent factors, two networks are
employed to represent view-independent and view-dependent
factors as (Fan et al. 2023). The view-independent network
relates solely to spatial position and normal vector, while
the view-dependent network additionally considers the di-
rection of reflections. Each module is implemented with an
MLP comprising two layers, with 64 and 32 hidden units
respectively.

To speed up distilling the uncertainty field, we utilize
another feature grid structure similar to the SDF network.
The configuration of the grid parameter is L=8, Nmin=16,
Nmax=512, Featuredim=2, followed by a two-level MLP
with a dimension of 64 and a ReLU activation function to
prevent negative outputs. The network takes the spatial posi-
tion of surface points as input and outputs the corresponding
view-independent geometric uncertainties.

B Modifications to Baselines
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Figure B: Sparsification curves. The figure illustrates the
AUSE curves based on ∆MAE and ∆MSE for ActiveN-
eRF (Pan et al. 2022), CFNeRF (Shen et al. 2022) and our
method. The dashed lines depict varying actual geometric
errors corresponding to different methods. The discrepancies
introduce interference in quantifying the capability for uncer-
tainty estimation. Therefore, as shown in Fig. 5 in our main
paper, we unify the representation using an SDF-based repre-
sentation to mitigate the significant interference of different
actual geometric errors on uncertainty quantification.

It is widely acknowledged that SDF-based methods out-
perform NeRF-based methods in the quality of geometric
reconstruction. To validate the impact of geometric errors
on uncertainty quantification, we first make a comparison
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Figure C: The modification of CFNeRF. We make structural modifications to the CFNeRF architecture to adapt it for the
SDF-based representation. We show the rendered results and reconstruction quality of the modified CFNeRF.

with the NeRF-based uncertainty estimation methods: CFN-
eRF (Shen et al. 2022) and ActiveNeRF (Pan et al. 2022). As
demonstrated by the AUSE curves in Fig. B, the quantifica-
tion of uncertainty is disrupted by the discrepancies of the
actual geometric errors associated with different methods.

Therefore, we make structural modifications to each
method for fairness considerations, converting the NeRF-
based architecture into the SDF-based architecture to avoid
significant differences in geometric errors that could affect
the assessment of uncertainty modeling capabilities. The spe-
cific modifications made to each method are outlined below:

CFNeRF (Shen et al. 2022): As Fig. C shows, we follow the
setting in (Shen et al. 2022) and use two Conditional Normal-
izing Flow (CNF) models to sample radiance and SDF values
instead of density values from distributions qθ(r|x,d, z) and
qθ(s|x, z). Each CNF computes a transformation of a sample
from the latent distribution qψ(z) conditioned on an embed-
ding h, which is computed by an MLP with the location-view
pair (x,d) as input. We follow the optimization process of
CFNeRF (Shen et al. 2022) and adopt a Variational Bayesian
approach to learn the posterior distribution defined in (Shen
et al. 2022) based on the volume rendering formulation pro-
posed in (Wang et al. 2021). When computing the uncertainty,
we sample a set of random variables z1:K from latent distri-
bution qϑ(z) and obtain a set of estimated depth-values for
each pixel. The mean and variance over the K samples are
treated as the estimated depth and its associated uncertainty.
The results of the modified methods are presented in Fig. C.
Despite ensuring satisfactory rendering quality under sparse
viewpoints, there is a decline in the reconstruction quality, as
sampling from probability distributions in CNF introduces
noise in geometry.

ActiveNeRF (Pan et al. 2022): Follow (Pan et al. 2022),
we define the radiance color of a location r(t) as a Gaussian
distribution c(r(t)) ∼ N (c̄(r(t)), β̄2(r(t))). We replace the
output of the density MLP with an SDF value s and incorpo-
rate an additional branch to the MLP network to model the

variance β2 as follows:

[s, f, β2(r(t))] =MLPθ1,θ3(γx(r(t))), (1)
c̄(r(t)) =MLPθ2(f, γd(d)). (2)

We optimize the model by minimizing the negative log-
likelihood of rays {rNi=1}:

min
θ

1

N

N∑
i=1

∥C(ri)−C̄(ri)∥22
2β̄2(ri)

+
log β̄2(ri)

2
. (3)

The predicted color C̄(ri) is rendered with the volume ren-
dering formulation as (Wang et al. 2021), and the variance of
the rendered RGB β2(ri) is treated as the uncertainty.
Uncertainty-Guided NeRF (Lee et al. 2022): Follow (Lee
et al. 2022), we reconstruct the scene utilizing the SDF-based
representation (Wang et al. 2021) and compute the entropy of
the weight distribution along the rays, considering the regions
with non-concentrated weights indicate areas where the 3D
geometry can be improved. Since the weight w(t) can be
viewed as a Probability Density Function (PDF), the entropy
of a ray is defined as:

H(r) = −
N∑
i=1

w(r(ti))log(w(r(ti))). (4)

We calculate the entropy of each pixel’s corresponding ray
and utilize it as the uncertainty for that pixel.

C Additional Experiments Results
Additional decoupled results and estimated geometric un-
certainty. We present additional results on the BlendedMVS
dataset and DTU dataset with the decoupled results and the
estimated geometric uncertainties in Fig. D.
Details of ablation study. We present more results on dif-
ferent sizes of image patches, the versatility across different
numbers of training images, and other factors influencing
consistency computation on uncertainty quantification.

As shown in Fig. E, the utilization of small patch-based
consistency fails to accurately reflect geometric uncertainty
due to their sensitivity to view-dependent factors such as
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Figure D: Additional decoupled results and estimated geometric uncertainty. Our method presents accurate decoupled results
for view-dependent factors, and the learned geometric uncertainties align well with the real geometric error.

lighting, and large patch fails to capture geometric consis-
tency in detailed areas such as edges and corners. Although
we assume that the region surrounding a point can be treated
as a local plane, our method remains applicable to regions
such as sharp edges or corners, as the Durian and Jade in
Fig. D show.

As shown in Fig. F, our method accurately models geo-
metric uncertainty across different numbers of training views,
leveraging its strengths in occlusion awareness and robust-
ness to lighting interferences.
Additional results in the transparent region. Reconstruct-
ing transparent objects like glass is inherently challenging
in multi-view stereo (MVS) tasks. As shown in Fig. H, our
method is still able to some extent to overcome it and pre-
dict accurate geometric uncertainty in general: for the cases

where MVS-based methods fail in reconstruction, ours pre-
dicts high uncertainty; for the cases where accurate geometry
is recovered using additional constraints (e.g. GeoNeuS),
ours also achieves accurate uncertainty estimation utilizing
the proposed finetuning with decoupled fields to mitigate
view-dependent influences.
Additional analysis about pseudo labels. Considering our
method computes multi-view consistency as pseudo labels,
we conduct further analysis on the settings related to multi-
view consistency as shown in Fig. G. In calculating the sim-
ilarity between projected pixel patches, while Normalized
Cross-Correlation (NCC) and Structural Similarity Index
Measure (SSIM) are two widely used metrics in multi-view
stereo tasks, SSIM considers the structural information of
images, making it more robust to variations in lighting, con-
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Figure E: Ablation study of different patch sizes. Small patch size is sensitive to view-dependent factors, large patch size
struggles to capture finer details.
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Figure F: Ablation study of varying numbers of training views. Both the estimated uncertainty (†) and the ranked uncertainty
score (*) are shown. Our method accurately models the geometric uncertainty across different numbers of training views.
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Figure G: Additional analysis about pseudo labels. We conduct a detailed analysis of image similarity and patch pair selection
strategies to demonstrate the rationale of our scheme.
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Figure H: Results in transparent areas. Our method is able
to predict accurate geometric uncertainty in general.

trast, and scale when computing photometric consistency,
therefore, we utilize it to better assess the consistency of the
projections. We select the four patch pairs with the lowest
computed scores to overcome occlusion and lighting distur-
bances without incurring additional costs. We also test ray
casting to detect occlusions between pairs and filter them out
when computing consistency as adopted in RefNeuS [10],
and as shown in Fig. G, our strategy excels in overcoming
disturbances caused by viewing angles and lighting condi-
tions. Besides, selecting the lowest 4 scores is a common
practice in traditional MVS [9] and we also demonstrate it
achieving better predictions compared to selecting 2 and 6.

D Details of Incremental Reconstruction
In this section, we first visualize the uncertainty estimated
by our methods and the reconstructed geometry during in-
cremental reconstruction in the order of training stages. As
shown in Figure J, with the increased number of views, the
reconstructed mesh achieves higher quality and the uncer-
tainty shows lower scores. Moreover, we conduct qualitative
comparisons on reconstruction quality across different NeRF-
based next-best-view(NBV) strategies. As shown in Table 4
in the main paper, our geometric uncertainty-guided NBV
selection strategy achieves the best reconstruction results
under limited views (roughly 30% of the total image). And
as shown in Figure I, our strategy outperforms others with
more details such as leaves and twigs (in Barn), and lights (in
Truck). It is evident that our method demonstrates superior
performance in both surface reconstruction and novel view
synthesis.

E Plug-and-play Results with Various
Neural Surface Models

Our GURecon serves as a plug-and-play module applicable
to various neural surface reconstructions as long as the ge-
ometric surface can be computed on the fly. As shown in
Fig. K, we integrate GURecon as an additional module into



GT RGB

GT Random ActiveNeRF* Lee et al.* Ours
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main paper.
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Figure J: Visualization of incremental reconstruction. We visualize the geometry and uncertainty estimated by our method
during the incremental reconstruction with the changing number of training views.
existing mainstream NeuS approaches: NeuS (Wang et al.
2021), Geo-NeuS (Fu et al. 2022), NeuS-NGP (Zhao et al.
2022) and NeuralAngelo (Li et al. 2023). Our method accu-
rately estimates geometric uncertainty across various models
without incurring additional training costs, highlighting its
plug-and-play generalizability to other neural surface models.

Detailed description of the plug-and-play extension to
2DGS. We also extend our proposed uncertainty distillation
to the latest surface reconstruction work 2DGS (Huang et al.
2024). 2DGS is a state-of-the-art point-based renderer with
splendid geometry performance and represents the scene’s

geometry as a set of 2D Gaussians. A 2D Gaussian is defined
in a local tangent plane in world space, parameterized as
follows:

P (u, v) = pk + sutuu+ svtvv, (5)

where pk is the central point, tu and tv are the principal
tangential vectors that determine its orientation, and S =
(su, sv) is the scaling vector which controls the variances of
the 2D Gaussian distribution. For the point u = (u, v) in uv
space, its 2D Gaussian value can then be evaluated using the
standard Gaussian function:
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Figure K: Plug-and-play results in various neural surface models. Our proposed geometric uncertainty field can be migrated
as a plug-and-play module to any neural surface representation, providing an accurate estimation of geometric uncertainty.
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Figure L: Plug-and-play extension to 2DGS. We extend our
proposed uncertainty distillation into 2DGS.

G(u) = exp

(
−u2 + v2

2

)
. (6)

The center pk, scaling (su, sv), and the rotation (tu, tv) are
learnable parameters. Each 2D Gaussian primitive has opacity
α and view-dependent appearance c with spherical harmon-
ics. Through differentiable rasterization, Gaussians are sorted
according to their depth value and composed into an image
with front-to-back alpha blending:

c(x) =
∑
i=1

ciαiGi(u(x))
i−1∏
j=1

(1− αjGj(u(x))), (7)

where x represents a homogeneous ray emitted from the
camera and passing through uv space.

The main challenge in extending our method into 2DGS
is how to obtain the corresponding geometric surface dur-
ing the training process. Considering the distribution of 2D
Gaussian weights corresponding to each pixel is relatively
concentrated, we utilize the GS corresponding to the median
depth of each pixel where the accumulated opacity reaches
0.5 as the intersection with the actual surface, employ the
direction of its shortest axis as the normal, and then substitute
them into Eq. 3 in the main paper for homography warping.
As shown in Fig. L, with the proposed distillation method,
we can supervise an additional attribute of uncertainty for the
GS located on the surface.
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