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1 Proof of Lemma 2 and Proposition 1

Proof of Lemma 2. The input group feature fl−1 has the equivariance defined in Lemma 1, which
means that transforming the input image I with h′ ∈ G results in a group feature f ′ satisfying
f ′l−1(g) = fl−1(gh

′). Processing f ′l−1 by a group convolution, the output group feature f ′l (g) is
[f ′l (g)]i = σ

(∑
h∈H f

′
l−1(hg)Wi(h) + bi

)
= σ

(∑
h∈H fl−1(h(gh

′))Wi(h) + bi
)
= [fl(gh

′)]i.

Proof of Proposition 1. Based on Lemma 1 and Lemma 2, both the outputs of two group CNNs
fl,α and fl,β are equivariant to the transformation of image, which means transforming the input
image I with h′ ∈ G results in group features f ′l,α and f ′l,β which satisfy f ′l,α(g) = fl,α(gh

′) and
f ′l,β(g) = fl,β(gh

′) respectively. The bilinear pooling of the f ′l,α and f ′l,β is defined as d′i,j =∫
G
[f ′l,α(g)]i[f

′
l,β(g)]jdg =

∫
G
[fl,α(gh

′)]i[fl,β(gh
′)]jdg. Then replacing gh′ with g′ results in

d′i,j =
∫
G
[fl,α(g

′)]i[fl,β(g
′)]jdg

′ = di,j .

2 Bilinear forms of methods [5, 3, 1]

Subspace pooling [3, 1]. The local descriptors proposed in the [3, 1] are extracted by singular value
decomposition, which is denoted as subspace pooling in [4]. The subspace pooling is proved to be a
special form of bilinear pooling [2]. The proof is referred to [4] for the detail.

Accumulated stability [5]. The accumulated stability (AS) can be defined by AS =∑
g∈G

∑
h∈G |f(g) − f(h)| using the notation of our paper. The accumulated stability can be

written as (
∑
h |f(g)− f(h)|) · 1. It becomes a bilinear model when the output of the network α is∑

h |f(g)− f(h)| ∈ Rnα×ng and the output of the network β is all ones 1 ∈ Rng×1.

3 Architecture

We list the architectures of the models used in our experiments in Table 1, 2, 3, 4, 5, 6 and 7. In these
tables, “Conv(output channels, kernel size, stride)" denotes a convolutional layer. “Linear(output
channels)" denotes a fully connected layer. “AvgPool(kernel size,stride)" and “MaxPool(kernel
size,stride)" denote a average pooling layer and a max pooling layer respectively. “Subspace-
Pool(dim)" denotes a subspace pooling [4] which retains the first “dim" eigenvectors.
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VCNN
layer operation
conv0_sequential Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
conv0_short Conv(32,2,2)-InstanceNorm

conv0 = conv0_sequential + conv0_short
conv1_sequential Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
conv1_short Conv(32,2,2)-InstanceNorm

conv1 = conv1_sequential + conv1_short
conv2_sequential Conv(64,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
conv2_short Conv(64,2,2)-InstanceNorm

conv2 = conv2_sequential + conv2_short
conv3 Conv(32,5,1)-InstanceNorm-L2Norm

Table 1: Architecture of the Vanilla Convolutional Neural Network (VCNN).

GFC
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tgi ◦ I)
fully connected Linear(32*5*5, 512)-ReLU-Linear(512,128)

Table 2: Architecture of Group Fully Connected Networks (GFC).

GAS
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tg ◦ I)
feature_network Conv(64,1,1)-ReLU-Conv(128,1,1)
attention_network Linear(800,512)-ReLU-Linear(512,25)-SoftMax

Sum(attention×features)

Table 3: Architecture of Group Attention Selection Networks (GAS).
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GIFT
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tg ◦ I)
group_conv1 Conv(8,3,1)
group_conv2 Conv(16,3,1)

BilinearPool(group_conv1,group_conv2)

Table 4: Architecture of the proposed method GIFT-1.

Max Pooling
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tg ◦ I)
group_conv Conv(128,3,1)-MaxPool(5,5)

Table 5: Architecture of the model using max pooling.

Average Pooling
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tg ◦ I)
group_conv Conv(128,3,1)-AvgPool(5,5)

Table 6: Architecture of the model using average pooling.

Subspace Pooling
layer operation

Extractor

Conv(16,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
Conv(32,5,1)-InstanceNorm-ReLU-
Conv(32,5,1)-InstanceNorm-L2Norm

Extractor(Tg ◦ I)
SubspacePool [4] Conv(16,3,1)-SubspacePool(8)

Table 7: Architecture of the model using subspace pooling
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