Supplementary Material: GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs

Yuan Liu Zehong Shen Zhixuan Lin Sida Peng Hujun Bao* Xiaowei Zhou* State Key Lab of CAD&CG, ZJU-Sensetime Joint Lab of 3D Vision, Zhejiang University

1 **Proof of Lemma 2 and Proposition 1**

Proof of Lemma 2. The input group feature f_{l-1} has the equivariance defined in Lemma 1, which means that transforming the input image I with $h' \in G$ results in a group feature f' satisfying $f'_{l-1}(g) = f_{l-1}(gh')$. Processing f'_{l-1} by a group convolution, the output group feature $f'_l(g)$ is $[f'_l(g)]_i = \sigma \left(\sum_{h \in H} f'_{l-1}(hg) W_i(h) + b_i \right) = \sigma \left(\sum_{h \in H} f_{l-1}(h(gh')) W_i(h) + b_i \right) = [f_l(gh')]_i$.

Proof of Proposition 1. Based on Lemma 1 and Lemma 2, both the outputs of two group CNNs $f_{l,\alpha}$ and $f_{l,\beta}$ are equivariant to the transformation of image, which means transforming the input image I with $h' \in G$ results in group features $f'_{l,\alpha}$ and $f'_{l,\beta}$ which satisfy $f'_{l,\alpha}(g) = f_{l,\alpha}(gh')$ and $f'_{l,\beta}(g) = f_{l,\beta}(gh')$ respectively. The bilinear pooling of the $f'_{l,\alpha}$ and $f'_{l,\beta}$ is defined as $d'_{i,j} = \int_G [f'_{l,\alpha}(g)]_i [f'_{l,\beta}(g)]_j dg = \int_G [f_{l,\alpha}(gh')]_i [f_{l,\beta}(gh')]_j dg$. Then replacing gh' with g' results in $d'_{i,j} = \int_G [f_{l,\alpha}(g')]_i [f_{l,\beta}(g')]_j dg' = d_{i,j}$.

2 Bilinear forms of methods [5, 3, 1]

Subspace pooling [3, 1]. The local descriptors proposed in the [3, 1] are extracted by singular value decomposition, which is denoted as subspace pooling in [4]. The subspace pooling is proved to be a special form of bilinear pooling [2]. The proof is referred to [4] for the detail.

Accumulated stability [5]. The accumulated stability (AS) can be defined by $AS = \sum_{g \in G} \sum_{h \in G} |f(g) - f(h)|$ using the notation of our paper. The accumulated stability can be written as $(\sum_{h} |f(g) - f(h)|) \cdot \mathbf{1}$. It becomes a bilinear model when the output of the network α is $\sum_{h} |f(g) - f(h)| \in \mathbb{R}^{n_{\alpha} \times n_{g}}$ and the output of the network β is all ones $\mathbf{1} \in \mathbb{R}^{n_{g} \times 1}$.

3 Architecture

We list the architectures of the models used in our experiments in Table 1, 2, 3, 4, 5, 6 and 7. In these tables, "Conv(output channels, kernel size, stride)" denotes a convolutional layer. "Linear(output channels)" denotes a fully connected layer. "AvgPool(kernel size,stride)" and "MaxPool(kernel size,stride)" denote a average pooling layer and a max pooling layer respectively. "Subspace-Pool(dim)" denotes a subspace pooling [4] which retains the first "dim" eigenvectors.

^{*}Corresponding authors: {xzhou,bao}@cad.zju.edu.cn. Project page: https://zju3dv.github.io/GIFT.

VCNN		
layer	operation	
conv0_sequential	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
conv0_short	Conv(32,2,2)-InstanceNorm	
$conv0 = conv0_sequential + conv0_short$		
conv1_sequential	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
conv1_short	Conv(32,2,2)-InstanceNorm	
conv1 = conv1_sequential + conv1_short		
conv2_sequential	Conv(64,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
conv2_short	Conv(64,2,2)-InstanceNorm	
$conv2 = conv2_sequential + conv2_short$		
conv3	Conv(32,5,1)-InstanceNorm-L2Norm	

Table 1: Architecture of the Vanilla Convolutional Neural Network (VCNN).

GFC		
layer	operation	
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
	Conv(32,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-L2Norm	
Extractor($T_{g_i} \circ I$)		
fully connected	Linear(32*5*5, 512)-ReLU-Linear(512,128)	

Table 2: Architecture of Group Fully Connected Networks (GFC).

GAS		
layer	operation	
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
	Conv(32,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-L2Norm	
Extractor($T_g \circ I$)		
feature_network	Conv(64,1,1)-ReLU-Conv(128,1,1)	
attention_network	Linear(800,512)-ReLU-Linear(512,25)-SoftMax	
Sum(attention×features)		

Table 3: Architecture of Group Attention Selection Networks (GAS).

GIFT	
layer	operation
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)
	Conv(32,5,1)-InstanceNorm-ReLU-
	Conv(32,5,1)-InstanceNorm-L2Norm
Extractor($T_g \circ I$)	
group_conv1	Conv(8,3,1)
group_conv2	Conv(16,3,1)
BilinearPool(group_conv1,group_conv2)	

Table 4: Architecture of the proposed method GIFT-1.

Max Pooling		
layer	operation	
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
	Conv(32,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-L2Norm	
Extractor($T_g \circ I$)		
group_conv	Conv(128,3,1)-MaxPool(5,5)	

Table 5: Architecture of the model using max pooling.

Average Pooling		
layer	operation	
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
	Conv(32,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-L2Norm	
Extractor($T_g \circ I$)		
group_conv	Conv(128,3,1)-AvgPool(5,5)	

Table 6: Architecture of the model using average pooling.

Subspace Pooling		
layer	operation	
Extractor	Conv(16,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-ReLU-AvgPool(2,2)	
	Conv(32,5,1)-InstanceNorm-ReLU-	
	Conv(32,5,1)-InstanceNorm-L2Norm	
Extractor($T_g \circ I$)		
SubspacePool [4]	Conv(16,3,1)-SubspacePool(8)	

Table 7: Architecture of the model using subspace pooling

References

- [1] Tal Hassner, Viki Mayzels, and Lihi Zelnik-Manor. On sifts and their scales. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 1522–1528. IEEE, 2012.
- [2] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained visual recognition. In *Proceedings of the IEEE international conference on computer vision*, pages 1449–1457, 2015.
- [3] Zhenhua Wang, Bin Fan, and Fuchao Wu. Affine subspace representation for feature description. In European Conference on Computer Vision, pages 94–108. Springer, 2014.
- [4] Xing Wei, Yue Zhang, Yihong Gong, and Nanning Zheng. Kernelized subspace pooling for deep local descriptors. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1867–1875, 2018.
- [5] Tsun-Yi Yang, Yen-Yu Lin, and Yung-Yu Chuang. Accumulated stability voting: A robust descriptor from descriptors of multiple scales. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 327–335, 2016.