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Abstract

We propose a new structure-from-motion framework to
recover accurate camera poses and point clouds from
unordered images. Traditional SfM systems typically
rely on the successful detection of repeatable keypoints
across multiple views as the first step, which is difficult for
texture-poor scenes, and poor keypoint detection may break
down the whole SfM system. We propose a new detector-free
SfM framework to draw benefits from the recent success
of detector-free matchers to avoid the early determination
of keypoints, while solving the multi-view inconsistency
issue of detector-free matchers. Specifically, our framework
first reconstructs a coarse SfM model from quantized
detector-free matches. Then, it refines the model by a novel
iterative refinement pipeline, which iterates between an
attention-based multi-view matching module to refine feature
tracks and a geometry refinement module to improve the
reconstruction accuracy. Experiments demonstrate that the
proposed framework outperforms existing detector-based
SfM systems on common benchmark datasets. We also
collect a texture-poor SfM dataset to demonstrate the capa-
bility of our framework to reconstruct texture-poor scenes.
Based on this framework, we take the first place in Image
Matching Challenge 2023 [9]. Project page: https:
//zju3dv.github.io/DetectorFreeSfM/.

1. Introduction

Structure-from-Motion (SfM) is a fundamental task in
computer vision, which aims to recover camera poses, in-
trinsic parameters, and point clouds from multi-view images
of a scene. The estimated camera poses and optional point
clouds benefit downstream tasks, such as visual localization,
multi-view stereo, and novel view synthesis.

SfM has been studied for decades, with many well-
established methods [4, 10, 56, 11], open-source systems
such as Bundler [44] and COLMAP [41], and commercial
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Figure 1. Comparison between traditional detector-based SfM
and the proposed detector-free SfM. For the texture-poor scene,
detector-based SfM fails due to the poor repeatability of detected
keypoints at the beginning, while our detector-free SfM framework
leverages detector-free matching and achieves complete reconstruc-
tion with highly accurate camera poses.

software [3, 2] that are accurate and scalable to large-scale
scenes. As a routine, they require to detect and match sparse
feature points across multiple views [28, 12, 38] at the be-
ginning of the pipeline to build multi-view point-to-point
correspondences. This requirement could not be fulfilled in
many cases. For example, in texture-poor regions, it is hard
to robustly detect repeatable keypoints across multiple views
for matching. The poor feature detection and matching be-
come the bottleneck of the whole SfM pipeline, which leads
to missing image registration or even failed reconstruction
of the entire model. Fig. 1 presents an example.

Recently, detector-free matchers [45, 8, 53] achieve state-
of-the-art performance on the image-matching task. They
have shown a strong capability for matching low-textured
regions with the help of the detector-free design and the
attention mechanism [50]. They often use a coarse-to-fine
matching strategy for efficiency. The dense matching on a
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Figure 2. Multi-view Inconsistency Issue of Detector-Free
Matching. The resulting feature locations of Ij are varied when Ij
is matched to Ii and Ik, yielding fragmentary feature tracks.

coarse grid is first performed between downsampled feature
maps of two images. Then, the feature locations of coarse
matches on one image are fixed, while their subpixel corre-
spondences are searched on the other image with fine-level
feature maps. Therefore, the resulting feature locations in an
image depend on the other image, as shown in Fig. 2. This
pair-dependent nature leads to fragmentary feature tracks
when running pair-wise matching over multiple views, which
makes detector-free matchers not directly applicable to ex-
isting SfM systems.

In this paper, we propose a new SfM framework that is
able to leverage the recent success of detector-free matching
and recover highly-accurate camera poses even for texture-
poor scenes. An overview of our pipeline is depicted in
Fig. 3. To solve the inconsistency issue of detector-free
matching, our SfM framework reconstructs the scene in a
coarse-to-fine manner, which first builds a coarse SfM model
with the quantized matches, and then iteratively refines the
model towards higher accuracy.

Specifically, our framework first matches image pairs
with a detector-free feature matcher, e.g., LoFTR [45]. Then,
in the coarse reconstruction phase, we quantize the feature
locations by rounding them into a coarse grid to improve
consistency and reconstruct a coarse SfM model. This coarse
model provides initial camera poses and scene structures for
the later refinement phase. Next, we propose an iterative
refinement pipeline that alternates between a feature track re-
finement phase and a geometry refinement phase to improve
pose and point cloud accuracy. The feature track refinement
module is built on a novel transformer-based multi-view
matching network, which enhances the discrimitiveness of
extracted features by encoding positional and multi-view
context with self- and cross-attention mechanisms. Based on
refined feature tracks, the geometry refinement module uses
bundle adjustment and track topology adjustment to improve
the accuracy of camera poses and point clouds.

Experiments on the public ETH3D dataset [42] and Image
Matching Challenge (IMC) [22] dataset demonstrate that our
detector-free SfM framework outperforms state-of-the-art
detector-based SfM systems with respect to various metrics.
To further evaluate and demonstrate the capability of our
SfM framework on challenging scenes, we also collect a
texture-poor SfM dataset which is composed of 17 scenes
with 1020 image bags. Thanks to the detector-free design

and the iterative refinement pipeline, our framework can
recover accurate camera poses with high registration rates
even for challenging texture-poor scenes. Fig. 1 presents
some examples.

Contributions:

• A new detector-free SfM framework built upon detector-
free matchers to handle texture-poor scenes.

• An iterative refinement pipeline with a transformer-based
multi-view matching network to efficiently refine both
feature tracks and reconstruction results.

• A new texture-poor SfM dataset with ground-truth pose
annotations.

2. Related Work

Structure-from-Motion. Feature correspondence-based
SfM methods have long been investigated [30, 6, 15, 32].
Many previous works focus on improving the efficiency
and robustness of large-scale scene reconstruction [4, 5, 10,
56, 11, 41]. Some methods try to disambiguate matches
when applied to scenes with highly repetitive or symmetric
structures [35, 55]. As discussed in the introduction, these
methods require feature detection and matching at the be-
ginning of the pipeline. In challenging scenes, especially in
texture-poor regions, poor keypoint detection will affect the
overall SfM pipeline.

More recent end-to-end SfM methods propose to directly
regress poses [51, 60, 31, 58] or solve poses using differen-
tial bundle adjustment (BA) [46, 17]. These methods avoid
explicit feature matching and thus don’t suffer from poor
feature matching. However, they have limited scalability and
generalizability on real-world settings. With the success of
recent neural scene representations, some methods [26, 21]
try to optimize poses with differentiable rendering. How-
ever, they often rely on using previous correspondence-based
methods, e.g., COLMAP [41], to provide initial poses, as
joint pose and scene optimization from scratch is difficult to
converge and prone to local minima, c.f. [26, 29].

Different from these previous methods, our detector-free
SfM framework eliminates the requirement of sparse feature
detection at the beginning of the pipeline, which is more
robust in challenging scenarios such as low-textured regions
and repetitive patterns. Moreover, our framework is scalable
to large-scale scenes and can handle in-the-wild data with
extreme view-point and illumination changes. [54, 19] are
relevant to our framework which also eliminates feature
detection by performing coarse grid-level matching first and
then refining 2D points for sub-pixel accuracy. Different
from their refinement that is single- or two-view based, our
framework is capable of leveraging multi-view information
to refine a feature track.



Feature Matching. Feature Matching is often a prereq-
uisite for SfM and SLAM. A typical feature matching
pipeline [28, 37, 12, 13, 34] is to detect and describe key-
points on each image, and then match them by nearest neigh-
bor search or learning-based matchers [38, 7]. The merit of
these methods is the high matching efficiency based on the
sparse points. However, for challenging scenarios, especially
low-textured regions, poor feature detection at the beginning
is the bottleneck and affects the overall SfM system.

In recent years, many methods directly match image pairs
in a dense [49] or semi-dense manner [36, 24, 45, 47, 8,
53], avoiding feature detection. With the help of Trans-
former [50], some semi-dense matching methods [45, 8, 53]
achieve higher accuracy compared with detector-based base-
lines and show strong capabilities in building correspon-
dences on low-textured regions. However, due to their incon-
sistency problem when matching multiple views (shown in
Fig. 2), it is hard to directly apply them to the current SfM
systems, as discussed in the introduction. While rounding [8]
or merging strategies [43] could be used to produce long fea-
ture tracks for SfM, these strategies sacrifice the matching
accuracy, which will significantly reduce the accuracy of the
reconstructed SfM models. Unlike them, our detector-free
SfM framework with a coarse-to-fine manner can recover
highly accurate poses and point clouds.

Multi-View Refinement. Accurate multi-view correspon-
dences are crucial for recovering accurate point clouds and
camera poses in SfM. The technical challenge is that per-
view detection of feature points cannot guarantee their ge-
ometric consistency among multiple views. To solve this
problem, some previous methods perform multi-view re-
finement with flow [14] or dense features [27], which bring
significant accuracy improvement for SfM. PatchFlow [14]
first estimates the dense flow field within the local patch
of each tentative pair and then refines multi-view 2D lo-
cations by minimizing the energy function based on the
estimated flow. PixSfM [27] performs feature-metric key-
point adjustment and bundle adjustment to refine 2D feature
locations before SfM and the entire scene after SfM, respec-
tively. Our detector-free SfM framework may adopt these
two methods to refine the quantized matches and SfM mod-
els. However, PatchFlow suffers from high computation due
to pair-wise flow estimations. PixSfM needs to preserve
feature patches or cost maps of all 2D observations in the
memory for the feature-metric BA. Given that detector-free
matchers produce significantly more correspondences than
sparse matchers, the memory footprint of adapting PixSfM
to our detector-free SfM pipeline is inevitably large, espe-
cially on large-scale scenes. Different from them, we devise
a transformer-based multi-view refinement matching module,
which can efficiently and accurately refine a feature track
with a single forward pass. Moreover, thanks to the design

of our refinement phase that separately refines feature tracks
and performs geometry refinement, the geometric BA can be
leveraged for efficiency both in terms of speed and memory.
Experimental comparisons are provided in Sec. 4.6.

3. Method
An overview of our detector-free SfM framework is

shown in Fig. 3. Given a set of unordered images {Ii},
our objective is to recover camera poses {ξi ∈ SE(3)}, in-
trinsic parameters {Ci} and a scene point cloud {Pj}. The
recovered camera poses are in a global coordinate system. To
achieve this goal, we propose a two-stage pipeline, in which
we first establish correspondences between image pairs with
a detector-free matcher and reconstruct an initial coarse SfM
model (Sec. 3.1). Then, we perform iterative refinement to
improve the accuracy of poses and point clouds (Sec. 3.2).

3.1. Detector-Free Matching and Coarse SfM

For a set of unordered images, our framework directly
performs detector-free semi-dense feature matching between
image pairs instead of first detecting sparse keypoints as
in traditional SfM pipeline [41]. Eliminating the keypoint
detection phase can help avoid poor detection affecting the
overall SfM system and benefit the reconstruction of chal-
lenging texture-poor scenes.

Match Quantization. Directly adapting the correspon-
dences of semi-dense matchers for SfM is not straightfor-
ward, due to the inconsistent multi-view matches as depicted
in Fig. 2 and discussed in the introduction. Our idea is to
strive for match consistency by sacrificing accuracy in the
coarse SfM phase. Concretely, we quantize the 2D locations
of matches into a grid: ⌊x/r⌉ ∗ r, where ⌊·⌉ is the rounding
operator and r is the grid cell size. This quantization step
forces multiple subpixel matches that are close to each other
to merge into a single grid node, which improves consistency.
Note that the coarse-level correspondences output by some
detector-free [45, 53, 8] matchers are typically at 1/8 image
resolution, which can directly be used as quantized matches.
The ablation analysis of r is given in Sec. 4.5.

After the match quantization, we utilize these coarse
matches for incremental mapping [41] to obtain a coarse
SfM model. The accuracy of recovered camera poses and
point clouds are limited due to the match quantization, which
serves as the initialization of our refinement framework in-
troduced in the next section.

3.2. Iterative SfM Refinement

We proceed to refine the initial SfM model to obtain
improved camera poses and point clouds. To this end, we
propose an iterative refinement pipeline. Within each itera-
tion, we first enhance the accuracy of feature tracks with a
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Figure 3. Pipeline Overview. Beginning with a collection of unordered images, the Coarse SfM stage generates an initial SfM model based
on multi-view matches from a detector-free matcher. Then, the Iterative Refinement stage improves the accuracy of the SfM model by
alternating between the feature track refinement module and the geometry refinement module.

multi-view matching module. These refined feature tracks
are then fed into a geometry refinement phase which opti-
mizes camera poses and point clouds jointly. The refinement
process can be performed multiple times for higher accuracy.
An overview is shown in Fig. 3.

3.2.1 Feature Track Refinement

A feature track Tj = {xk ∈ R2|k = 1 : Nj} is a set of
2D keypoint locations in multi-view images corresponding
to a 3D scene point Pj . We devise a multi-view matching
module to efficiently refine feature tracks {Tj} for high
accuracy, which is illustrated in Fig. 4. The basic idea is to
locally adjust the keypoint locations in all views so that the
correlation among their features is maximized.

As exhaustively correlating all pairs of views is computa-
tionally intractable, we select a reference view, extract the
feature at the keypoint in the reference view, and correlate
it with the local feature maps with a size of p × p around
the keypoints in other views (called query views), yielding a
set of p× p heatmaps that can be viewed as distributions of
the keypoint locations. In each query view, we compute the
expectation and variance over each heatmap as the refined
keypoint location and its uncertainty, respectively. This pro-
cess gives us a candidate feature track with refined keypoint
locations in all query views as well as the uncertainty of
this candidate track, i.e., the sum of variance over all the
heatmaps. To also refine the keypoint location in the refer-
ence view, we sample a w × w grid of reference locations
around the original keypoint in the reference view. Then, we
repeat the above feature correlation procedure to produce a
candidate feature track for each sampled reference location.
Finally, the candidate track with the smallest uncertainty is
selected as the refined feature track T ∗

j .

Reference View Selection. For each feature track, our
criteria to select the reference view is to minimize the key-
point scale differences between the reference view and query
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Figure 4. Multi-View Matching Module. Given an input feature
track with a selected reference view ( ), the local patches centered
at the keypoints are fed into a multi-view feature transformer to
extract feature patches. A w × w grid of reference locations is
sampled in the reference view. For each reference location ( ), its
feature is correlated with the feature patches of query views ( )
to obtain heatmaps that indicate the expected keypoint locations
and their variances in the query views, yielding a candidate feature
track. This process is repeated for all reference locations. Finally,
the candidate track with the smallest variance is selected as the
refined track.

views to improve the matchability. Specifically, we com-
pute the depth values of keypoints based on the currently
recovered poses and point clouds, which indicate the scale
information. Then, the view with a medium scale across the
track is selected as the reference view whereas the rest views
are query views. More details about scale estimation can be
found in the supplementary material.

Multi-View Feature Transformer. The multi-view match-
ing needs to extract local feature patches centered at 2D
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F̃r

Figure 5. Multi-View Feature Transformer. The local patches
centered at the keypoints of an input feature track are fed into a
CNN to extract features and then flattened and concatenated to
perform multiple self- and cross-attentions.

keypoints of each Tj . Instead of using a CNN, we design a
multi-view feature transformer to enhance the discrimitive-
ness of extracted features by encoding multi-view context
with attention mechanisms. As shown in Fig. 5, we feed the
p× p image patches centered at each keypoint into a CNN
backbone to obtain a set of feature patches {Fk ∈ Rp×p×c},
where c is the number of channels. Then, {Fk} are flattened
to {F̃k ∈ Rm×c}, where m = p × p. The flattened fea-
tures of query views are concatenated into a single query
feature F̃q along the first dimension. Then, we perform self-
and cross-attention by n times between flattened reference
feature F̃r and query feature F̃q to obtain the transformed
multi-view features {F̂k}, which are used for feature corre-
lation to refine the feature track.

Training. Besides the detector-free matcher, the only
learned module in our framework is the multi-view feature
transformer. It is trained on MegaDepth [25] by minimizing
the average ℓ2 loss on keypoint locations between the refined
tracks and the ground-truth tracks. We construct training
data by sampling image bags on each scene with a maximum
of six images in each bag. Image bags are sampled by the
co-visibility extracted from the provided scene SfM model.
Then, the ground-truth feature tracks in each bag are built by
randomly selecting a reference image and projecting its grid
points to other views by depth maps. The 2D locations of
tracks in the query views are perturbed randomly by a max-
imum of seven pixels to generate the coarse feature tracks,
which are the input of our multi-view matching module.
More details are provided in the supplementary material.

3.2.2 Geometry Refinement

Based on the previous refined feature tracks {T ∗
j }, our ge-

ometry refinement pipeline iteratively refines the poses, in-
trinsics, point clouds, as well as topology of feature tracks.
Track topology means the graph structure of a set of con-
nected 2D keypoints.

Unlike PixSfM [27] that needs to preserve feature patches
or cost maps of all 2D observations in memory to perform

feature-metric BA, we can directly perform the efficient
geometric BA [48] to optimize poses and point clouds based
on the refined feature tracks. Formally, we minimize the
reprojection error to optimize intrinsic parameters {Ci},
poses {ξi}, and 3D points {Pj}:

E =
∑

j

∑
x∗
k∈T ∗

j
ρ
(
∥π (ξi ·Pj ,Ci)− x∗

k∥
2
2

)
,

where π(·) project points in the camera coordinate to image
plane by Ci, ρ(·) is a robust loss function [18].

After BA, we perform the feature track topology adjust-
ment (TA) based on the refined model, which benefits further
BA and multi-view matching. Since the overall scene is more
accurate after the multi-view refinement and BA, we adjust
the topology of feature tracks by adding 2D keypoints that
previously failed to be registered into feature tracks and
merging the tracks that can meet the reprojection criteria at
this time, following [57, 41]. The outlier filtering [44, 57, 41]
is also performed to further reject points that cannot meet
the maximum reprojection threshold ϵ after the refinement.

We alternate BA and TA multiple times to obtain the
refined poses and point clouds. Then, we project the refined
point clouds to images with the current poses to update their
2D locations, which will serve as the initialization of the
multi-view matching in the next refinement iteration.

3.3. Texture-Poor SfM Dataset

We collect an SfM dataset composed of 17 object-centric
texture-poor scenes with accurate ground-truth poses. In
our dataset, low-textured objects are placed on a texture-
less plane. For each object, we record a video sequence of
around 30 seconds surrounding the object. The per-frame
ground-truth poses are estimated by ARKit [1] and BA post-
processing, with the assistance of textured markers, which
are cropped out in test images. To impose larger viewpoint
changes, we sample 60 subset image bags for each scene,
similar to the IMC dataset [22]. Example images are shown
in Fig. 6 and more details are in the supplementary material.

4. Experiments
4.1. Baselines and Datasets

Baselines. We compare our method with a few base-
line methods in two categories: 1) Detector-based SfM
pipeline [41] with different features, including SIFT [28],
D2-Net [13], R2D2 [34] and SuperPoint (SP) [12], and
matchers, including Nearest Neighbor (NN) and Super-
Glue (SG) [38]. All these detector-based baselines are cou-
pled with PixSfM [27], which is the state-of-the-art SfM re-
finement method. 2) Detector-free SfM baseline LoFTR [45]
+ PixSfM [27], where PixSfM is fed with LoFTR’s matches,
which are quantized by the same strategy as in our pipeline.



Type Method ETH3D Dataset IMC Dataset Texture-Poor SfM Dataset

AUC@1◦ AUC@3◦ AUC@5◦ AUC@3◦ AUC@5◦ AUC@10◦ AUC@3◦ AUC@5◦ AUC@10◦

Detector-Based

COLMAP (SIFT+NN) 26.71 38.86 42.14 23.58 32.66 44.79 2.87 3.85 4.95
SIFT + NN + PixSfM 26.94 39.01 42.19 25.54 34.80 46.73 3.13 4.08 5.09

D2Net + NN + PixSfM 34.50 49.77 53.58 8.91 12.26 16.79 1.54 2.63 4.54
R2D2 + NN + PixSfM 43.58 62.09 66.89 31.41 41.80 54.65 3.79 5.51 7.84

SP + SG + PixSfM 50.82 68.52 72.86 45.19 57.22 70.47 14.00 19.23 24.55

Detector-Free

LoFTR + PixSfM 54.35 73.97 78.86 44.06 56.16 69.61 20.66 30.49 42.01
Ours (LoFTR) 59.12 75.59 79.53 46.55 58.74 72.19 26.07 35.77 45.43

Ours (AspanTrans.) 57.23 73.71 77.70 46.79 59.01 72.50 25.78 35.69 45.64
Ours (MatchFormer) 56.70 73.00 76.84 45.83 57.88 71.22 26.90 37.57 48.55

Table 1. Results of Multi-View Camera Pose Estimation. Our framework is compared with detector-based and detector-free baselines on
multiple datasets by the AUC of pose error at different thresholds. Bold and underline indicate the best and second-best results.
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Figure 6. Qualitative Results. Our method with detector-free matcher LoFTR [45] is qualitatively compared with the detector-based
baseline SP + SG + PixSfM on multiple scenes. The red cameras ( ) are ground-truth poses while the blue cameras ( ) are recovered poses.

Datasets. Datasets used for evaluation include the Image
Matching Challenge (IMC) 2021 dataset [22], the ETH3D
dataset [42], and the proposed Texture-Poor SfM dataset.
These datasets cover multiple types of scenes with differ-
ent challenges. The IMC Phototourism dataset contains
large-scale outdoor scenes. All eight test scenes with 1400
subsampled image bags are used for evaluation. The key
challenge of this dataset is the sparse views with large view-
point and illumination changes. The ETH3D dataset contains
25 indoor and outdoor scenes with sparsely captured high-
resolution images and accurately calibrated poses by Lidar
as ground truth. The proposed Texture-Poor SfM dataset
contains low-textured object-centric scenes with 1020 sub-
sampled image bags in total. On all datasets, images are
considered unordered for all methods.

4.2. Implementation Details

Our detector-free SfM framework is implemented with
multiple detector-free matchers, including LoFTR [45],
MatchFormer [53] and AspanTransformer [8], to demon-
strate the compatibility of our pipeline. In the coarse SfM
phase, we use their coarse-level matches (r = 8) as quan-
tized matches for SfM [41]. Then, the refinement is per-
formed twice. A maximum of 16 views are used for multi-
view refinement matching, where longer tracks will be di-
vided into segments and processed separately. The local
patch size for feature extraction p = 15 and the region size
for reference location search w = 7. The backbone from
S2DNet [16] is used as the CNN feature extractor, and the
number of attention groups n = 2. The linear attention [23]

is used in all attention layers for efficiency. In geometry
refinement, the BA and topology adjustment are alternated
five times, and the outlier filter threshold ϵ = 3px. The
running time reported in the experiments is measured using
four NVIDIA-V100 GPUs for parallelized matching and 16
CPU cores for BA.

4.3. Multi-View Camera Pose Estimation

Camera pose estimation is a central goal of SfM. This
section evaluates the recovered multi-view poses.

Evaluation Protocols. On all datasets, matches are built
exhaustively between all tentative image pairs, and the same
image resizing strategy is used for all methods. For all the
baselines, the default hyperparameters in their original im-
plementations are used. The AUC of pose error at different
thresholds is used as the metric to evaluate the accuracy
of estimated multi-view poses, following the IMC bench-
mark [22] and PixSfM [27]. More details are provided in the
supplementary material.

Results. As shown in Tab. 1, our detector-free SfM frame-
work outperforms existing baselines over all datasets. On the
ETH3D dataset with high-resolution images, our framework
with LoFTR achieves the highest multi-view pose accuracy.
Even when detector-based methods are further refined with
PixSfM for multi-view consistency, our framework still sur-
passes them by a large margin. On the IMC dataset with
large viewpoint and illumination changes, the detector-based



Method Accuracy (%) Completeness (%)

1cm 2cm 5cm 1cm 2cm 5cm

Detector-
Based

SIFT + NN + PixSfM 76.18 85.60 93.16 0.17 0.71 3.29
D2Net + NN + PixSfM 74.75 83.81 91.98 0.83 2.69 8.95
R2D2 + NN + PixSfM 74.12 84.49 91.98 0.43 1.58 6.71

SP + SG + PixSfM 79.01 87.04 93.80 0.75 2.77 11.28

Detector-
Free

LoFTR + PatchFlow 66.73 78.73 89.93 3.48 11.34 30.96
LoFTR + PixSfM 74.42 84.08 92.63 2.91 9.39 27.31

Ours (LoFTR) 80.38 89.01 95.83 3.73 11.07 29.54
Ours (AspanTrans.) 77.63 87.40 95.02 3.97 12.18 32.42
Ours (MatchFormer) 79.86 88.51 95.48 3.76 11.06 29.05

Table 2. Results of 3D Triangulation. Our method is compared
with the baselines on the ETH3D [42] dataset using accuracy and
completeness metrics with different thresholds.

baseline SP+SG+PixSfM achieves remarkable performance,
while our detector-free framework consistently performs bet-
ter on all metrics. The results demonstrate the robustness
and effectiveness of our framework on large-scale outdoor
scenes with internet images. Due to the severe low-textured
scenario and viewpoint changes in the Texture-Poor SfM
dataset, detector-based methods struggle with poor keypoint
detection, as shown in Fig. 6. Thanks to the detector-free de-
sign, our framework achieves significantly higher accuracy.

Compared with LoFTR+PixSfM, the detector-free base-
line that uses the same LoFTR coarse matches as ours, our
framework is more accurate on all datasets and metrics, es-
pecially on the AUC@1◦ metric with a strict error threshold,
which demonstrates the effectiveness of our iterative refine-
ment pipeline with the multi-view matching module.

4.4. 3D Triangulation

With known camera poses and intrinsics, triangulating
accurate scene point clouds based on image correspondences
is another important task in SfM. This section evaluates the
accuracy and completeness of triangulated point clouds.

Evaluation Protocols. The training set of ETH3D is used
for evaluation, which is composed of 13 indoor and outdoor
scenes with millimeter-accurate scanned dense point clouds
as ground truth. We follow the protocol used in [14, 27],
which triangulates the scene point clouds with fixed cam-
era poses and intrinsics. Then, we use the ETH3D bench-
mark [42] to evaluate the triangulated point clouds in terms
of accuracy and completeness. The metrics are reported with
different distance thresholds including (1cm, 2cm, 5cm),
which are averaged across all scenes. The results of SIFT,
D2Net, and R2D2 descriptors are from the PixSfM [27]
paper, while the results of other baselines are obtained by
running their open-source code.

Results. The results are presented in Tab. 2. Despite the
trade-off between accuracy and completeness, our detector-
free SfM framework achieves better performances on both
metrics. Compared to the state-of-the-art detector-based
baseline SP+SG+PixSfM, our framework with LoFTR
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Figure 7. Effects of Transformer and Refinement. 1. For a fea-
ture track in the texture-poor region, its feature patches (visualized
by PCA) become more discriminative after the multi-view trans-
former. and represent coarse and refined keypoint locations,
respectively. 2. The point cloud after refinement becomes more
accurate.

coarse matches achieves higher accuracy with ∼ 3× re-
construction completeness, thanks to the iterative refinement
module. Our framework with AspanTransformer coarse
matches achieves higher completeness while sacrificing a
little accuracy compared to using the LoFTR matches. Com-
pared with the detector-free LoFTR+PixSfM, our method
using the same input matches achieves higher performances
both in terms of accuracy and completeness, which further
demonstrates the effectiveness of our refinement module.

4.5. Ablation Studies

We conduct several experiments to validate the efficacy of
our design choices on the ETH3D dataset with triangulation
metrics. More ablation studies with pose metrics are in the
supplementary material.

Coarse Match Quantization. Tab. 3 (1) shows the impact
of the match quantization rounding ratio r. Our framework
achieves satisfying accuracy and completeness directly using
the coarse-level matches output by LoFTR (r = 8). Using
a smaller quantization ratio yields better matching accuracy
but significantly more 2D and 3D points, thus decreasing
running efficiency.

Number of Refinement Iterations. Tab. 3 (2) reports the
results after each refinement iteration. Without refinement,
the coarse SfM point cloud is inaccurate due to the match
quantization. After the first iteration, the accuracy improves
significantly, especially on the 1cm distance threshold. In-
creasing the number of iterations can improve accuracy, with
a slight decrease in completeness due to the track merge.
Refining more than twice brings little accuracy improve-
ment while spending more time. Therefore, we only perform
refinement twice for both efficiency and accuracy.

Maximum Number of Views in Multi-view Matching.
Tab. 3 (3) shows the effect of the number of views used for



Accu. (%) Complete. (%) Time (s)
1cm 2cm 1cm 2cm

(1) Quantization ratio
r = 8 80.38 89.01 3.73 11.07 557
r = 4 81.58 89.82 4.41 12.27 718
r = 2 81.18 89.78 5.41 14.15 791

(2) Number of iterations

No refine. 42.13 59.92 2.21 8.45 296
1 iter 77.62 87.04 3.83 11.44 430
2 iter 80.38 89.01 3.73 11.07 557
3 iter 81.26 89.59 3.57 10.64 678

(3) Number of views in
multi-view matching

2 views 69.77 81.69 2.02 7.10 438
4 views 72.30 83.42 2.48 8.35 435
8 views 74.68 85.02 3.09 9.84 431

16 views 77.62 87.04 3.83 11.44 430

(4) Refinement designs

Full model 80.38 89.01 3.73 11.07 557
w/o transformer 71.85 82.66 2.72 8.79 541

w/o ref. location search 76.66 86.79 4.16 12.56 554
w/o topology adjustment 75.58 85.47 4.07 12.17 552

Table 3. Ablation Studies. On the ETH3D dataset, we quantita-
tively evaluate the impact of the quantization ratio, the number of
iterations of refinement, the number of views used for multi-view
matching, and other designs in refinement. The reported triangu-
lation accuracy and completeness are averaged across all scenes,
while the running time is evaluated on a single scene Kicker.
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Figure 8. Applications. The recovered poses on texture-poor scenes
by our detector-free SfM framework benefit substream tasks, e.g.,
dense reconstruction using neural implicit fields [52].

multi-view matching in a single iteration of refinement. It is
shown that using more views for multi-view matching con-
sistently improves both accuracy and completeness without
significantly affecting running time.

Refinement Designs. Tab. 3 (4) shows the benefits of the
feature transformer and reference location search in multi-
view matching and the track topology adjustment in the
geometry refinement. Compared with multi-view match-
ing that directly uses backbone CNN features for matching,
using multi-view transformed features can significantly im-
prove accuracy and completeness. The result demonstrates
the effectiveness of the proposed transformer module, which
considers feature relations among multiple views and helps
disambiguate features for more accurate matching, as visu-
alized in Fig. 7 (1). Reference location search in the refer-
ence view brings a 3.7% improvement on the 1cm metric.
Without the track topology adjustment in geometry refine-
ment, the point clouds’ accuracy drops by 4.6% on the strict
threshold (1cm), which demonstrates the benefits of topology
adjustment on accuracy.

4.6. Efficiency on Large-Scale Scenes

We conduct experiments on the Aachen v1.1 dataset [39,
59, 40] to demonstrate the efficiency of our framework in

500 Images 1000 Images 2000 Images

Number of 3D Points 553k 1525k 3235k

Ours Refinement Time (s) 312 969 2319

BA
Memory (GB)

PixSfM (Feature Map) 161.7 393.8 904.5
PixSfM (Cost Map) 3.79 9.23 21.2

Ours 0.37 1.21 2.63

Table 4. Efficiency on Large-Scale Scenes. Our method is com-
pared with PixSfM. Both of them use LoFTR coarse matches as
input and share the same coarse SfM initialization. Only refinement
time and peak memory footprint during BA are reported.

handling large-scale scenes. The time and memory costs for
refinement are shown in Tab. 4. We compare our method
with PixSfM that uses the same LoFTR [45] coarse matches
and the same number of CPU cores as ours, where its cost
map approximation is used to reduce the memory footprint
and improve efficiency. Our pipeline achieves competitive ef-
ficiency even on the scene with 2000 images and 3.2 million
3D points. Moreover, since we perform multi-view match-
ing first and then refine geometry, we do not need to store
the feature patch or cost map of each 2D point in memory
for BA as PixSfM does. Therefore, the geometric BA in
our pipeline can be very efficient with a small memory foot-
print on large-scale scenes, which significantly outperforms
PixSfM in memory efficiency.

On the scene with 2000 images, the detector-free match-
ing [45] and coarse SfM takes 4.2 hours in total, due
to a large number of semi-dense matches and 3D points.
Thus, the overall speed of our framework is slower than
detector-based systems that are based on sparse features.
More running time comparisons on large-scale scenes in
the 1DSfM [56] dataset are shown in the supplementary
material.

5. Conclusions
We propose a new detector-free SfM framework to re-

cover camera poses and point clouds from unordered images.
In contrast to traditional SfM systems that depend on key-
point detection at the beginning, our framework leverages the
recent success of detector-free matchers to avoid early deter-
mination of keypoints which may break down the whole SfM
system if the detected keypoints are not repeatable, which
often occur in challenging texture-poor scenes. Extensive
experiments demonstrate that our framework outperforms
detector-based SfM baselines across all datasets and met-
rics. We believe the proposed SfM framework opens up
the possibility to reconstruct texture-poor scenes from un-
ordered images as shown in Fig. 1 and Fig. 6 and benefits
downstream tasks such as dense reconstruction and view
synthesis as shown in Fig. 8, as it can recover accurate poses
and relatively dense point clouds.

Limitations and future works. The main limitation of
our framework is efficiency. Due to the significant number



of matches produced by detector-free matches, the overall
mapping phase will be inevitably slower than the previous
detector-based pipelines, especially on large-scale scenes.

As future work, our framework can be extended with
more advanced parallelized BA methods [20, 33] for better
efficiency and integration with multi-modality data such as
depth maps and IMUs if available in real applications.
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