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Abstract

We propose a structure-from-motion framework to recover
accurate camera poses and point clouds from unordered
images. Traditional SfM systems typically rely on the
successful detection of repeatable keypoints across multiple
views as the first step, which is difficult for texture-poor
scenes, and poor keypoint detection may break down
the whole SfM system. We propose a detector-free SfM
framework to draw benefits from the recent success of
detector-free matchers to avoid the early determination
of keypoints, while solving the multi-view inconsistency
issue of detector-free matchers. Specifically, our framework
first reconstructs a coarse SfM model from quantized
detector-free matches. Then, it refines the model by a novel
iterative refinement pipeline, which iterates between an
attention-based multi-view matching module to refine feature
tracks and a geometry refinement module to improve the
reconstruction accuracy. Experiments demonstrate that the
proposed framework outperforms existing detector-based
SfM systems on common benchmark datasets. We also
collect a texture-poor SfM dataset to demonstrate the capa-
bility of our framework to reconstruct texture-poor scenes.
Based on this framework, we take the first place in Image
Matching Challenge 2023 [9]. Project page: https:
//zju3dv.github.io/DetectorFreeSfM/.

1. Introduction

Structure-from-Motion (SfM) is a fundamental task in com-
puter vision, which aims to recover camera poses, intrinsic
parameters, and point clouds from multi-view images of
a scene. The estimated camera poses and optional point
clouds benefit downstream tasks, such as visual localization,
multi-view stereo, and novel view synthesis.

SfM has been studied for decades, with many well-
established methods [4, 10, 11, 54], open source systems
such as Bundler [43] and COLMAP [40], and commercial
software [1, 3] that are accurate and scalable for large-scale
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Figure 1. Comparison between traditional detector-based SfM
and the proposed detector-free SfM. For the texture-poor scene,
detector-based SfM fails due to the poor repeatability of detected
keypoints at the beginning, while our detector-free SfM framework
leverages detector-free matching and achieves complete reconstruc-
tion with highly accurate camera poses. Our framework is applica-
ble to real-world challenging scenes such as the deep sea and the
moon surface.

scenes. As a routine, they require to detect and match sparse
feature points across multiple views [12, 28, 37] at the be-
ginning of the pipeline to build multi-view point-to-point
correspondences. This requirement could not be fulfilled in
many cases. For example, in texture-poor regions, it is hard
to robustly detect repeatable keypoints across multiple views
for matching. Poor feature detection and matching become
the bottleneck of the whole SfM pipeline, leading to missing
image registration or even failing reconstruction of the entire
model. Fig. | presents an example.
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Figure 2. Multi-view Inconsistency Issue of Detector-Free
Matching. The resulting feature locations of I; are varied when I;
is matched to I; and Iy, yielding fragmentary feature tracks.

Recently, detector-free matchers [8, 44, 51] have achieved
state-of-the-art performance on the image matching task.
They have shown a strong capability to match low-textured
regions with the help of the detector-free design and the
attention mechanism [49]. They often use a coarse-to-fine
matching strategy for efficiency. The dense matching on a
coarse grid is first performed between down-sampled fea-
ture maps of two images. Then, the feature locations of
coarse matches on one image are fixed, while their subpixel
correspondences are searched on the other image with fine-
level feature maps. Therefore, the resulting locations of
features in an image depend on the other image, as shown
in Fig. 2. This pair-dependent nature leads to fragmentary
feature tracks when running pairwise matching over multi-
ple views, which makes detector-free matchers not directly
applicable to existing SfM systems.

In this paper, we propose an SfM framework that is able
to leverage the recent success of detector-free matching and
recover highly-accurate camera poses even for texture-poor
scenes. An overview of our pipeline is depicted in Fig. 3.
To solve the inconsistency issue of detector-free matching,
our SfM framework reconstructs the scene in a coarse-to-
fine manner, which first builds a coarse StM model with the
quantized matches, and then iteratively refines the model
towards higher accuracy.

Specifically, our framework first matches image pairs
with a detector-free feature matcher, e.g., LOFTR [44]. Then,
in the coarse reconstruction phase, we quantize the feature
locations by rounding them into a coarse grid to improve
consistency and reconstruct a coarse StM model. This coarse
model provides initial camera poses and scene structures for
the later refinement phase. Next, we propose an iterative
refinement pipeline that alternates between a feature track re-
finement phase and a geometry refinement phase to improve
pose and point cloud accuracy. The feature track refinement
module is built on a novel transformer-based multi-view
matching network, which enhances the discrimitiveness of
extracted features by encoding multi-view contexts with self-
and cross-attention mechanisms. Based on refined feature
tracks, the geometry refinement module uses bundle adjust-
ment and track topology adjustment to improve the accuracy
of camera poses and point clouds.

Experiments on the public ETH3D dataset [41] and Image

Matching Challenge (IMC) [21] dataset demonstrate that our

detector-free SfTM framework outperforms state-of-the-art

detector-based SfM systems with respect to various metrics.

To further evaluate and demonstrate the capability of our

StM framework on challenging scenes, we also collect a

texture-poor SfM dataset which is composed of 17 scenes

with 1020 image bags. Thanks to the detector-free design
and the iterative refinement pipeline, our framework can
recover accurate camera poses with high registration rates
even for challenging texture-poor scenes. Fig. | presents
some examples.

In summary, this paper has the following contributions:

* A detector-free SfM framework built upon detector-free
matchers to handle texture-poor scenes.

* An iterative refinement pipeline with a transformer-based
multi-view matching network to efficiently refine both
feature tracks and reconstruction results.

* A new texture-poor SfM dataset with ground-truth pose
annotations.

2. Related Work

Structure-from-Motion. Feature correspondence-based
SfM methods have long been investigated [6, 15, 30, 32].
Many previous work has focused on improving the ef-
ficiency and robustness of large-scale scene reconstruc-
tion [4, 5, 10, 11, 40, 54]. Some methods try to disambiguate
matches when applied to scenes with highly repetitive or
symmetric structures [34, 53]. As discussed in the introduc-
tion, these methods require feature detection and matching
at the beginning of the pipeline. In challenging scenes, espe-
cially in texture-poor regions, poor keypoint detection will
affect the overall SfM pipeline.

More recent end-to-end SfM methods propose to directly
regress poses [31, 50, 56, 58] or solve poses using differen-
tial bundle adjustment (BA) [17, 45]. These methods avoid
explicit feature matching and thus don’t suffer from poor
feature matching. However, they have limited scalability and
generalizability in real-world settings. With the success of
recent neural scene representations, some methods [20, 25]
try to optimize poses with differentiable rendering. However,
they often rely on the use of previous correspondence-based
methods, e.g., COLMAP [40], to provide initial poses, as
joint pose and scene optimization from scratch are difficult
to converge and prone to local minima, c.f. [25, 29].

Unlike them, our detector-free SfM framework eliminates
the requirement of sparse feature detection at the beginning
of the pipeline, which is more robust in challenging scenarios
such as low-textured regions and repetitive patterns. More-
over, our framework is scalable to large-scale scenes and can
handle in-the-wild data with wide baseline and illumination
changes. [52] and OnePose++ [19] also eliminate feature
detection by performing coarse grid-level matching first and
then refining 2D points for subpixel accuracy. Different



from their refinement that is single- or two-view-based, our
framework can leverage multi-view information to refine a
feature track. More comparisons and detailed discussions
with OnePose++ are given in Sec. 4.4 and the supplementary
materials.

Feature Matching. Feature Matching is often a prereq-
uisite for SfM and SLAM. A typical feature matching
pipeline [12, 13, 28, 33, 36] is to detect and describe key
points in each image and then match them using nearest-
neighbor search or learning-based matchers [7, 27, 37]. The
merit of these methods is the high matching efficiency based
on the sparse points. However, for challenging scenarios,
especially regions with a low texture, poor feature detection
at the beginning is the bottleneck and affects the overall StM
system.

In recent years, many methods have directly matched im-
age pairs in a dense [48] or semidense manner [8, 23, 35, 44,
46, 51], avoiding feature detection. With the help of Trans-
former [49], some semi-dense matching methods [8, 44, 51]
achieve higher accuracy compared to detector-based base-
lines and show strong capabilities in building correspon-
dences in low-textured regions. However, due to their incon-
sistency problem when matching multiple views (shown in
Fig. 2), it is difficult to directly apply them to the current
StM systems, as discussed in the introduction. While the
rounding [8] or merging strategies [42] could be used to pro-
duce long feature tracks for SfM, these strategies sacrifice
the accuracy of the match, which will significantly reduce the
accuracy of the reconstructed SfM models. Unlike them, our
detector-free SfM framework with a coarse-to-fine manner
can recover highly accurate poses and point clouds.

Multi-View Refinement. Accurate multi-view correspon-
dences are crucial for recovering accurate point clouds and
camera poses in SfTM. The technical challenge is that per-
view detection of feature points cannot guarantee their ge-
ometric consistency among multiple views. To solve this
problem, some previous methods perform multi-view refine-
ment with flow [14] or dense features [26], which bring a sig-
nificant improvement in accuracy for SfM. PatchFlow [14]
first estimates the dense flow field within the local patch
of each tentative pair and then refines multi-view 2D lo-
cations by minimizing the energy function based on the
estimated flow. PixSfM [26] performs feature-metric key-
point adjustment and bundle adjustment to refine 2D feature
locations before SfM and the entire scene after SfM, respec-
tively. Our detector-free SfM framework may adopt these
two methods to refine the quantized matches and SfM mod-
els. However, PatchFlow suffers from high computation due
to pairwise flow estimations. PixSfM needs to preserve fea-
ture patches or cost maps of all 2D observations in memory
for the feature-metric BA. Given that detector-free match-

ers produce significantly more correspondences than sparse
matchers, the memory footprint of adapting PixSfM to our
detector-free SfM pipeline is inevitably large, especially
on large-scale scenes. Different from them, we devise a
transformer-based multi-view refinement matching module,
which can efficiently and accurately refine a feature track
with a single forward pass. Moreover, thanks to the design
of our refinement phase that separately refines feature tracks
and performs geometry refinement, the geometric BA can
be leveraged for efficiency in terms of speed and memory.
Experimental comparisons are provided in Sec. 4.6.

3. Method

An overview of our detector-free SfM framework is shown
in Fig. 3. Given a set of unordered images {I,}, our ob-
jective is to recover camera poses {&; € SE(3)}, intrinsic
parameters {C; } and a scene point cloud {P;}. The recov-
ered camera poses are in a global coordinate system. To
achieve this goal, we propose a two-stage pipeline, in which
we first establish correspondences between image pairs with
a detector-free matcher and reconstruct an initial coarse StM
model (Sec. 3.1). Then, we perform an iterative refinement
to improve the accuracy of poses and point clouds (Sec. 3.2).

3.1. Detector-Free Matching and Coarse SfM

For a set of unordered images, our framework performs a
detector-free semi-dense feature matching directly between
image pairs instead of first detecting sparse keypoints as in
the traditional SfM pipeline [40]. Eliminating the keypoint
detection phase can help avoid poor detection affecting the
overall SfM system and can benefit the reconstruction of
challenging texture-poor scenes.

Match Quantization. Directly adapting the correspon-
dences of semi-dense matchers for SfM is not straightfor-
ward, due to the inconsistent multi-view matches as depicted
in Fig. 2 and discussed in the introduction. Our idea is to
strive for match consistency by sacrificing accuracy in the
coarse StM phase. Concretely, we quantize the 2D locations
of matches into a grid: |x/r] * r, where |-] is the rounding
operator and r is the size of the cell of the grid. This quan-
tization step forces multiple matches of subpixels that are
close to each other to merge into a single grid node, which
improves consistency. Note that the coarse-level correspon-
dences output by some detector-free [8, 44, 51] matchers are
typically at /s image resolution, which can be directly used
as quantized matches. The ablation analysis of r is given in
Sec. 4.5.

After match quantization, we utilize these coarse matches
for incremental mapping [40] to obtain a coarse SfM model.
The accuracy of recovered camera poses and point clouds
is limited due to match quantization, which serves as the
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Figure 3. Pipeline Overview. Beginning with a collection of unordered images, the Coarse SfM stage generates an initial SfM model based
on multi-view matches from a detector-free matcher. Then, the Iterative Refinement stage improves the accuracy of the StM model by
alternating between the feature track refinement module and the geometry refinement module.

initialization of our refinement framework introduced in the
next section.

3.2. Iterative SfM Refinement

We proceed to refine the initial SfM model to obtain im-
proved camera poses and point clouds. To this end, we
propose an iterative refinement pipeline. Within each itera-
tion, we first enhance the accuracy of feature tracks with a
multi-view matching module. These refined feature tracks
are then fed into a geometry refinement phase, which opti-
mizes camera poses and point clouds jointly. The refinement
process can be performed multiple times for higher accuracy.
An overview is shown in Fig. 3.

3.2.1 Feature Track Refinement

A feature track 7; = {x; € R?*|k = 1: N,} is a set of 2D
keypoint locatlons in multi-view images correspondmg to
a 3D scene point P;. We devised a multi-view matching
module to efficiently refine feature tracks {7;} for high
accuracy, which is illustrated in Fig. 4. The basic idea is to
locally adjust the keypoint locations in all views so that the
correlation among their features is maximized.

As exhaustively correlating all pairs of views is computa-
tionally intractable, we select a reference view, extract the
feature at the keypoint in the reference view, and correlate
it with local feature maps with a size of p X p around the
keypoints in other views (called query views), yielding a set
of p X p heat maps that can be viewed as distributions of
the keypoint locations. In each query view, we compute the
expectation and variance over each heatmap as the refined
keypoint location and its uncertainty, respectively. This pro-
cess gives us a candidate feature track with refined keypoint
locations in all query views as well as the uncertainty of
this candidate track, i.e., the sum of variance over all the
heatmaps. To also refine the location of the keypoint in the
reference view, we sample a w X w grid of reference lo-
cations around the original keypoint in the reference view.
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Figure 4. Multi-View Matching Module. Given an input feature
track with a selected reference view (' ), the local patches centered
at the keypoints are fed into a multi-view feature transformer to
extract feature patches. A w x w grid of reference locations is
sampled in the reference view. For each reference location (O), its
feature is correlated with the feature patches of query views ( )
to obtain heatmaps that indicate the expected keypoint locations
and their variances in the query views, yielding a candidate feature
track. This process is repeated for all reference locations. Finally,
the candidate track with the smallest variance is selected as the
refined track.

Then, we repeat the above feature correlation procedure to
produce a candidate feature track for each sampled refer-
ence location. Finally, the candidate track with the smallest
uncertainty is selected as the refined feature track 7.*.

Reference View Selection. For each feature track, our
criteria to select the reference view is to minimize the key-
point scale differences between the reference view and query
views to improve the matchability. Specifically, we com-
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Figure 5. Multi-View Feature Transformer. The local patches
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CNN to extract features and then flattened and concatenated to
perform multiple self- and cross-attentions.

pute the depth values of keypoints based on the currently
recovered poses and point clouds, which indicate the scale
information. Then, the view with a medium scale across the
track is selected as the reference view whereas the rest views
are query views. More details about scale estimation can be
found in the supplementary material.

Multi-View Feature Transformer. The multi-view match-
ing needs to extract local feature patches centered at 2D
keypoints of each 7;. Instead of using a CNN, we design a
multi-view feature transformer to enhance the discretitive-
ness of extracted features by encoding multi-view contexts
with attention mechanisms. As shown in Fig. 5, we feed the
p X p image patches centered at each keypoint into a CNN
backbone to obtain a set of feature patches {F; € RP*P*c}
where c¢ is the number of channels. Then, {Fy} is flattened
to {F), € R™*¢}, where m = p x p. The flattened fea-
tures of the query views are concatenated into a single query
feature F¢ along the first dimension. Then, we perform
self- and cross-attention by n times between the flattened
reference feature F” and the query feature FY to obtain the
transformed multi-view features {Fk}, which are used for
feature correlation to refine the feature track.

Training. Besides the detector-free matcher, the only mod-
ule learned in our framework is the multi-view feature trans-
former. It is trained on MegaDepth [24] by minimizing the
average /o loss at keypoint locations between the refined
tracks and the ground-truth tracks. We constructed training
data by sampling image bags on each scene with a maximum
of six images in each bag. Image bags are sampled by the
covisibility extracted from the provided scene SfM model.
Then, the ground-truth feature tracks in each bag are built by
randomly selecting a reference image and projecting its grid
points to other views by depth maps. The 2D locations of
tracks in the query views are perturbed randomly by a max-
imum of seven pixels to generate the coarse feature tracks,
which are the input of our multi-view matching module.
More details are provided in the supplementary material.

3.2.2 Geometry Refinement

Based on the previously refined feature tracks {7}, our
geometry refinement pipeline iteratively refines the poses,
intrinsics, point clouds, as well as the topology of the feature
tracks. Track topology means the graph structure of a set of
connected 2D keypoints.

Unlike PixSfM [26] that needs to preserve feature patches
or cost maps of all 2D observations in memory to perform
feature-metric BA, we can directly perform efficient geomet-
ric BA [47] to optimize poses and point clouds based on the
refined feature tracks. Formally, we minimize the reprojec-
tion error to optimize intrinsic parameters {C; }, poses {&;},
and 3D points {P;}:

E=%,Yer p(lm(&-Pj,C) = xl3)

where 7(-) project points in the camera coordinate to image
plane by C,, p(+) is a robust loss function [18].

After BA, we perform the feature track topology adjust-
ment (TA) based on the refined model, which benefits fur-
ther BA and multi-view matching. Since the overall scene
is more accurate after multi-view refinement and BA, we
adjust the topology of feature tracks by adding 2D keypoints
that previously failed to be registered into feature tracks and
merging the tracks that can meet the reprojection criteria at
this time, following [40, 55]. Outlier filtering [40, 43, 55] is
also performed to further reject points that cannot meet the
maximum reprojection threshold e after refinement.

We alternate BA and TA multiple times to obtain the
refined poses and point clouds. Then, we project the refined
point clouds to images with the current poses to update their
2D locations, which will serve as the initialization of the
multi-view matching in the next refinement iteration.

3.3. Texture-Poor SfM Dataset

We collect an SfM dataset composed of 17 object-centric
texture-poor scenes with accurate ground-truth poses. In
our dataset, low-textured objects are placed on a texture-
less plane. For each object, we record a video sequence
of around 30 seconds surrounding the object. The ground-
truth poses per frame are estimated by ARKit [2] and BA
post-processing, with the help of textured markers, which
are cropped in the test images. To impose larger viewpoint
changes, we sample 60 subset image bags for each scene,
similar to the IMC dataset [21]. Example images are shown
in Fig. 6 and more details are given in the supplementary
material.

4. Experiments

4.1. Baselines and Datasets

Baselines. 'We compare our method with a few base-
line methods in two categories: 1) Detector-based SfM



Type Method ETH3D Dataset IMC Dataset Texture-Poor SfM Dataset
AUC@I1° AUC@3° AUC@5° AUC@3° AUC@5° AUC@I10° AUC@3° AUC@s5° AUC@I10°

COLMAP (SIFT+NN) 26.71 38.86 42.14 24.87 34.47 45.94 2.87 3.85 4.95

SIFT + NN + PixSfM 26.94 39.01 42.19 26.45 35.73 47.24 3.13 4.08 5.09

Detector-Based D2Net + NN + PixSfM 34.50 49.77 53.58 10.27 13.12 17.25 1.54 2.63 4.54
R2D2 + NN + PixSfM 43.58 62.09 66.89 32.44 42.55 55.01 3.79 551 7.84

SP + SG + PixSftM 50.82 68.52 72.86 46.30 58.43 71.62 14.00 19.23 24.55

LoFTR + PixStM 54.35 73.97 78.86 44.80 57.00 70.43 20.66 30.49 42.01

Detector-Free Ours (LoFTR) 59.12 75.59 79.53 46.94 59.14 72.44 26.07 35.77 4543
Ours (AspanTrans.) 57.23 73.71 77.70 47.58 59.88 73.29 25.78 35.69 45.64

Ours (MatchFormer) 56.70 73.00 76.84 46.32 58.50 71.99 26.90 37.57 48.55

Table 1. Results of Multi-View Camera Pose Estimation. Our framework is compared with detector-based and detector-free baselines on
multiple datasets by the AUC of pose error at different thresholds. For all datasets, images are considered unordered for all methods. Bold

and underline indicate the best and second-best results.
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Figure 6. Qualitative Results. Our method with detector-free matcher LoFTR [44] is qualitatively compared with the detector-based
baseline SP + SG + PixSfM on multiple scenes. The red cameras (<) are ground-truth poses while the blue cameras (<) are recovered poses.

pipeline [40] with different features, including SIFT [28],
D2-Net [13], R2D2 [33] and SuperPoint (SP) [12],
and matchers, including Nearest Neighbor (NN), Super-
Glue (SG) [37]. All these detector-based baselines are cou-
pled with PixSfM [26], which is the state-of-the-art StM re-
finement method. 2) Detector-free SfM baseline LoFTR [44]
matches with PixSfM [26] and OnePose++ [19], where these
methods are fed with LoFTR’s quantized matches, same as
our pipeline. Note that OnePose++ can only triangulate 3D
points by known camera poses, the comparison is given in
Sec. 4.4.

Datasets. Datasets used for the evaluation include the Image
Matching Challenge (IMC) 2021 dataset [21], the ETH3D
dataset [41], and the proposed Texture-Poor SfM dataset.
These datasets cover multiple types of scenes with differ-
ent challenges. The IMC Phototourism dataset contains
large-scale outdoor scenes. All nine test scenes with 1575
subsampled image bags are used for evaluation. The key
challenge of this data set is the sparse views with large view-
point and illumination changes. The ETH3D dataset contains
25 indoor and outdoor scenes with sparsely captured high-
resolution images and accurately calibrated poses by Lidar
as ground truth. The proposed Texture-Poor SfM dataset
contains low-textured object-centric scenes with 1020 sub-
sampled image bags in total. On all datasets, images are
considered unordered for all methods.

4.2. Implementation Details

Our detector-free SfM framework is implemented with mul-
tiple detector-free matchers, including LoFTR [44], Match-
Former [51] and AspanTransformer [8], to demonstrate the
compatibility of our pipeline. In the coarse SfM phase, we
use their coarse-level matches (r = 8) for ETH3D, IMC
dataset and r = 4 for challenging Texture-Poor SfM dataset
as quantized matches for SfM [40]. Then, the refinement
is performed twice. A maximum of 16 views are used for
multi-view refinement matching, where longer tracks will
be divided into segments and processed separately. The
local patch size for feature extraction p = 15 and the re-
gion size for reference location search w = 7. The S2DNet
backbone [16] is used as the CNN feature extractor and the
number of attention groups n = 2. Linear attention [22]
is used in all attention layers for efficiency. In geometry
refinement, the BA and topology adjustment are alternated
five times. The running time reported in the experiments was
measured using four NVIDIA-V100 GPUs for parallelized
matching and 16 CPU cores for BA.

4.3. Multi-View Camera Pose Estimation

Camera pose estimation is a central goal of SfM. This section
evaluates the recovered multi-view poses.

Evaluation Protocols. On all datasets, matches are built
exhaustively between all tentative image pairs, and the same
image resizing strategy is used for all methods. For all the
baselines, we follow PixSfM’s implementations. The AUC



Accuracy (%) Completeness (%)

Method

lem 2cm Scm  lem  2cm Scm

SIFT + NN + PixSfM ~ 76.18 85.60 93.16 0.17 0.71 3.29

Detector- D2Net + NN + PixStM  74.75 83.81 9198 0.83 2.69 895
Based R2D2 + NN + PixSfM 7412 8449 9198 043 158 6.71
SP + SG + PixStM 79.01 87.04 93.80 0.75 277 1128

OnePose++ 7151 82.86 9241 3.11 1006 28.44
Detect LoFTR +PixSIM 7442 8408 92.63 291 939 27.31
etector- Ours (LoFTR) 8024 8893 9582 373 11.07 29.54

Free Ours (AspanTrans.) 7734 87.14 94.86 4.24 1293 34.12

Ours (MatchFormer) 79.86 88.51 9548 3.76 11.06 29.05

Table 2. Results of 3D Triangulation. Our method is compared
with the baselines on the ETH3D [41] dataset using accuracy and
completeness metrics with different thresholds.

of pose error at different thresholds is used as a metric to
evaluate the accuracy of estimated multi-view poses, follow-
ing the IMC benchmark [21] and PixSfM [26]. More details
are provided in the supplementary material.

Results. As shown in Tab. 1, our detector-free SfM frame-
work outperforms existing baselines over all datasets. On the
ETH3D dataset with high-resolution images, our framework
with LoFTR achieves the highest multi-view pose accuracy.
Even when detector-based methods are further refined with
PixSfM for multi-view consistency, our framework still sur-
passes them by a large margin. On the IMC dataset with
large viewpoint and illumination changes, the detector-based
baseline SP+SG+PixSfM achieves remarkable performances,
while our detector-free framework consistently performs bet-
ter on all metrics. The results demonstrate the robustness
and effectiveness of our framework on challenging outdoor
scenes with images collected from the Internett. Due to the
severe low-textured scenario and viewpoint changes in the
Texture-Poor SfM dataset, detector-based methods struggle
with poor keypoint detection, as shown in Fig. 6. Due to the
detector-free design, our framework achieves significantly
higher accuracy.

Compared with LOFTR+PixSfM, the detector-free base-
line that uses the same LoFTR coarse matches as ours, our
framework is more accurate on all datasets and metrics, es-
pecially on the AUC@1° metric with a strict error threshold,
which demonstrates the effectiveness of our iterative refine-
ment pipeline with the multi-view matching module.

4.4. 3D Triangulation

With known camera poses and intrinsics, triangulating ac-
curate scene point clouds based on image correspondences
is another important task in SfM. This section evaluates the
accuracy and completeness of triangulated point clouds.

Evaluation Protocols. The training set of ETH3D is used
for evaluation, which is made up of 13 indoor and outdoor
scenes with millimeter-accurate scanned dense point clouds
as ground truth. We follow the protocol used in [14, 26],
which triangulates the point clouds of the scene with fixed
camera poses and intrinsics. Then we use the ETH3D bench-

w/o Transformer (1), _w/Transformer

E Correlation
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Query Views  Ref. View

Features Heatmap

Figure 7. Effects of Transformer and Refinement. 1. For a fea-
ture track in the texture-poor region, its feature patches (visualized
by PCA) become more discriminative after the multi-view trans-
former. O and - represent coarse and refined keypoint locations,
respectively. 2. The point cloud after refinement becomes more
accurate.

mark [41] to evaluate the triangulated point clouds in terms
of accuracy and completeness. The metrics are reported with
different distance thresholds, including (1em, 2em, 5em),
which are averaged across all scenes. The results of the
SIFT, D2Net and R2D2 descriptors are from the PixSfM [26]
paper, while the results of other baselines are obtained by
running their open-source code.

Results. The results are presented in Tab. 2. Despite
the trade-off between accuracy and completeness, our
detector-free SfM framework achieves better performance
on both metrics. Compared to strong detector-based base-
line SP+SG+ PixSfM, our framework with LoFTR coarse
matches achieves better precision with higher reconstruction
completeness, thanks to the iterative refinement module. Our
framework with AspanTransformer coarse matches achieves
higher completeness while sacrificing a little accuracy com-
pared to using the LoFTR matches. Compared with detector-
free methods including LoFTR with PixSfM and OnePose++,
our method using the same input matches achieves higher
accuracy while maintaining high completeness.

4.5. Ablation Studies

We conduct several experiments to validate the efficacy of
our design choices on the ETH3D dataset with triangulation
metrics. More ablation studies with pose metrics are in the
supplementary material.

Coarse Match Quantization. Tab. 3 (1) shows the impact
of the match quantization rounding ratio 7. Our framework
achieves satisfying accuracy and completeness directly using
the coarse-level matches output by LoFTR (r = 8). Using
a smaller quantization ratio yields better matching accuracy
but significantly more 2D and 3D points, thus decreasing
running efficiency.

Number of Refinement Iterations. Tab. 3 (2) reports the
results after each refinement iteration. Without refinement,
the coarse SfM point cloud is inaccurate due to the match



Accu. (%) Complete. (%)

Time (s)
lem 2cm  lem 2cm
r==8 80.24 8893 3.73 11.07 557
(1) Quantization ratio r=4 81.58 89.82 4.41 12.27 718
r=2 81.18 89.78 541 14.15 791
No refine. 42.13  59.92 221 8.45 296
(2) Number of iteration 1 iter 77.62 87.04 383 1144 430
umber ot Hierations 2iter 8024 8893 373 1107 557
3 iter 81.26 89.59 3.57 10.64 678
2 views 69.77 81.69 202  7.10 438
(3) Number of views in 4 views 7230 8342 248 8.35 435
multi-view matching 8 views 74.68 85.02 3.09 9.84 431
16 views 77.62 87.04 383 11.44 430
Full model 80.24 8893 373 1107 557
w/o transformer 75.12  85.50 3.00 9.37 543

(4) Refinement designs wl/o ref. location search ~ 76.66 86.79 4.16  12.56 554

w/o topology adjustment  75.58 85.47 4.07 12.17 552

Table 3. Ablation Studies. On the ETH3D dataset, we quantita-
tively evaluate the impact of the quantization ratio, the number of
iterations of refinement, the number of views used for multi-view
matching, and other designs in refinement. The reported triangu-
lation accuracy and completeness are averaged across all scenes,
while the running time is evaluated on a single scene Kicker.

quantization. After the first iteration, the accuracy improves
significantly, especially on the /cm distance threshold. In-
creasing the number of iterations can improve accuracy, with
a slight decrease in completeness due to the track merge.
Refining more than twice brings little accuracy improve-
ment while spending more time. Therefore, we only perform
refinement twice for both efficiency and accuracy.

Maximum Number of Views in Multi-View Match-
ing. Tab. 3 (3) shows the effect of the number of views used
for multi-view matching in a single iteration of refinement. It
is shown that using more views for multi-view matching con-
sistently improves both accuracy and completeness without
significantly affecting running time.

Refinement Designs. Tab. 3 (4) shows the benefits of the
feature transformer and reference location search in multi-
view matching and the track topology adjustment in the
geometry refinement. Compared with multi-view match-
ing that directly uses backbone CNN features for matching,
using multi-view transformed features can significantly im-
prove accuracy and completeness. The result demonstrates
the effectiveness of the proposed transformer module, which
considers feature relations among multiple views and helps
disambiguate features for more accurate matching, as visu-
alized in Fig. 7 (1). Reference location search in the refer-
ence view brings a 3.7% improvement on the /cm metric.
Without the track topology adjustment in geometry refine-
ment, the point clouds’ accuracy drops by 4.6% on the strict
threshold (/cm), which demonstrates the benefits of topol-
ogy adjustment on accuracy. More insights and discussions
about the robustness of coarse SfM and using our multi-view
transformer in PixSfM are in the supplementary material.

4.6. Scalability

We conduct experiments on the Aachen v1.1 dataset [38,
39, 57] to demonstrate the scalability of our framework,

500 Images 1000 Images 2000 Images
Number of 3D Points 553k 1525k 3235k
Ours Refinement Time (s) 312 969 2319
BA PixSfM (Feature Map) 161.7 393.8 904.5
Memory (GB) PixSfM (Cost Map) 3.79 9.23 21.2
i Ours 0.37 121 2.63

Table 4. Running Time and BA Memory. Our method is com-
pared with PixSfM. Both of them use LoFTR coarse matches as
input and share the same coarse SfM initialization. The refinement
time and peak memory footprint during BA are reported.

following PixSfM [26]. The time and memory costs for
refinement are shown in Tab. 4. We compare our method
with PixSfM that uses the same LoFTR [44] coarse matches
as ours, where its cost map approximation is used to reduce
the memory footprint and improve efficiency. Given that
there are a significant number of 2D and 3D points when
using detector-free matches for SfM, the memory footprint
of PixSfM’s featuremetic-BA is large because it needs to
preserve feature patches or cost maps of each 2D point in
memory. Conversely, since we separately refine 2D points
and scene geometry, the geometric-BA can be used in our
pipeline, which is very efficient with a small memory foot-
print on large scenes and significantly outperforms PixSfM
in memory efficiency.

On the scene with 2000 images, the detector-free match-
ing and coarse SfM takes 4.2 hours, due to a large number of
semi-dense matches and 3D points. Thus, the overall speed
of our framework is slower than detector-based systems that
are based on sparse features. More results and running time
comparisons on large-scale scenes in the 1DSfM [54] dataset
are shown in the supplementary material.

5. Conclusions

We propose a detector-free SfM framework to recover cam-
era poses and point clouds from unordered images. In con-
trast to traditional SfM systems that depend on keypoint
detection at the beginning, our framework leverages the
recent success of detector-free matchers to avoid early deter-
mination of keypoints that may break down the whole SfM
system if the detected keypoints are not repeatable, which
often occurs in challenging texture-poor scenes. Extensive
experiments demonstrate that our framework outperforms
detector-based SfM baselines across all datasets and metrics.
We believe that the proposed SfM framework opens up the
possibility of reconstructing texture-poor scenes from un-
ordered images as shown in Fig. 1 and Fig. 6 and benefits
downstream tasks such as dense reconstruction and view
synthesis. Please see supplementary material for discussions
about limitations, failure cases, and future works.
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